Firb

Fasi della QCD,

modelli di teoria dei campi e teoria del trasporto:

un approccio sistematico

alla fenomenologia degli ioni pesanti all'LHC

Partecipanti al progetto

Firb

6 - Risorse umane da impegnare nelle attività dell'Unità di Ricerca

6.1 - Personale a tempo indeterminato (A.1.1) e/o determinato (A.1.2) Personale dipendente dell'Istituzione, sede dell'Unità di ricerca

nº	Cognome	Nome	Dipartimento/Istituto/ Divisione/Settore	Qualifica	Tipologia	Mesi/ uomo	Costo
1.	BARBARO	Maria Benedetta	FISICA TEORICA	Professore Associato non confermato	Tempo Indeterminato	16	80.000
	TOTALE					16	80.000

Personale docente esterno alla sede dell'Unità di ricerca

nº	Cognome	Nome	Ente / Istituzione / Impresa	Dipartimento/Istituto/ Divisione/Settore	Qualifica	Tipologia	Mesi/ uomo	Costo
	TOTALE						0	0

Personale di Enti/Istituzioni/Imprese esterno alla sede dell'Unità di ricerca

nº	Cognome	Nome	Ente / Istituzione / Impresa	Dipartimento/Istituto/ Divisione/Settore	Qualifica	Tipologia	Mesi/ uomo	Costo
1.	MONTENO	Marco	Istituto Nazionale di Fisica Nucleare		Primo ricercatore	Tempo Indeterminato	24	80.000
2.	DE PACE	Arturo	Istituto Nazionale di Fisica Nucleare		Primo ricercatore	Tempo Indeterminato	12	40.000
3.	NARDI	Marzia	Istituto Nazionale di Fisica Nucleare		Ricercatore a tempo det.	Tempo Determinato	24	0
	TOTALE						60	120.000

6.2 - Assegnisti, dottorandi, post-doc e borsisti (A.2) - Già acquisiti con altri fondi e saltuariamente impiegato nel Progetto di Ricerca

nº	Cognome	Nome	Università	Dipartimento/Istituto	Qualifica	Mesi/ uomo
1.	BERAUDO	Andrea	Università degli Studi di TORINO	FISICA TEORICA	Assegnista	26
2.	ORTONA	Giacomo	Università degli Studi di TORINO		Dottorando	24

Purposes of the project (I)

- study the microscopic origin of the "nearly perfect fluid" behavior of QGP
- study the impact of a finite shear viscosity on various observables
- understand if the plasma to be created at LHC energies belongs to a new phase, with respect to the highly non-perturbative one created at RHIC
- two research units: University of Catania and Torino
 - more theoretical point of view (Torino)
 - more phenomenological point of view (Catania)

Purposes of the project (II)

in particular:

- development of field-theoretical microscopic models under the guidance of the numerical lattice QCD results
- identify the relevant degrees of freedom in the different temperature/density regimes
- provide a theoretical ground on which a transport theory incorporating the field interactions can be constructed
- verify the effects that the new proposed theoretical ideas have on the experimental observations at RHIC and at the upcoming LHC
- the study will be extended to heavy flavors
 - relevant at the LHC energies

Specific tasks of the Torino research unit

- Development of phenomenological models for QCD thermodynamics
 - capture the main features of QCD in a certain regime
 - reach regions of the phase diagram where lattice QCD cannot go
 - give an interpretation of lattice data in terms of effective degrees of freedom
- quarkonia correlators in a thermal medium
- effects of the color glass condensate on the dynamical evolution of the system

What happens below T_c ?

- At low T and $\mu = 0$, QCD thermodynamics is dominated by pions
- The interaction between pions is suppressed

 - the energy density of pions from 3-loop ChPT differs only less than 15% from the ideal gas value
 - P. Gerber and H. Leutwyler (1989)
- \blacklozenge as T increases, heavier hadrons start to contribute
- \clubsuit for $T \ge 140$ MeV heavy states dominate the energy density

Firb

Why HRG?

- In the virial expansion, the partition function can be split into a non-interacting piece and a piece which includes all interactions
- virial expansion and experimental information on scattering phase shift
 Prakash and Venugopalan (1992)
 - interplay between attractive and repulsive interaction

Interacting hadronic matter

can be well approximated by

a non-interacting gas of resonances

Features of HRG model

Firb

- An increase of energy in the system has three consequences:
 - \blacksquare a fixed temperature limit $T \to T_H$;
 - the momenta of the constituents do not continue to increase;
 - more and more species of heavier particles appear

New, non-kinetic way to use energy:

increasing the number of species

not the momentum per particle

♦ $T_H \simeq 150 - 200$ MeV: critical temperature for transition to quark matter Hagedorn and Rafelsky (1981); Blanchard, Fortunato and Satz (2004).

Partition function of HRG model

Firb

The pressure can be written as

$$p^{HRG}/T^{4} = \frac{1}{VT^{3}} \sum_{i \in mesons} \ln \mathcal{Z}_{m_{i}}^{M}(T, V, \mu_{X^{a}}) + \frac{1}{VT^{3}} \sum_{i \in baryons} \ln \mathcal{Z}_{m_{i}}^{B}(T, V, \mu_{X^{a}}),$$

where

$$\ln \mathcal{Z}_{m_i}^{M/B} = \mp \frac{V d_i}{2\pi^2} \int_0^\infty dk k^2 \ln(1 \mp z_i e^{-\varepsilon_i/T}) \quad ,$$

with energies $\varepsilon_i = \sqrt{k^2 + m_i^2}$, degeneracy factors d_i and fugacities

$$z_i = \exp\left(\left(\sum_a X_i^a \mu_{X^a}\right)/T\right)$$

 X^a : all possible conserved charges, including the baryon number B, electric charge Q, strangeness S.

F. Karsch, A. Tawfik, K. Redlich; S. Ejiri, F. Karsch, K. Redlich

Hadronic species from the Particle Data Book

hadron	m_{i} (GeV)	d_i	B_i	S_i	I_i	hadron	m_i (GeV)	d_i	B_i	S_i	I_i
π	0.140	3	0	0	1	N (1535)	1.530	4	1	0	1/2
K	0.496	2	0	1	1/2	π_1 (1600)	1.596	9	0	0	1
\overline{K}	0.496	2	0	-1	1/2	Δ (1600)	1.600	16	1	0	3/2
η	0.543	1	0	0	0	Λ (1600)	1.600	2	1	-1	0
ho	0.776	9	0	0	1	Δ (1620)	1.630	8	1	0	3/2
ω	0.782	3	0	0	0	η_2 (1645)	1.617	5	0	0	0
K^*	0.892	6	0	1	1/2	N (1650)	1.655	4	1	0	1/2
\overline{K}^*	0.892	6	0	-1	1/2	ω (1650)	1.670	3	0	0	0
N	0.939	4	1	0	1/2	Σ (1660)	1.660	6	1	-1	1
η'	0.958	1	0	0	0	Λ (1670)	1.670	2	1	-1	0
f_0	0.980	1	0	0	0	Σ (1670)	1.670	2	1	-1	1
a_0	0.980	3	0	0	1	ω_3 (1670)	1.667	7	0	0	0
ϕ	1.020	3	0	0	0	π_2 (1670)	1.672	15	0	0	1
Λ	1.116	2	1	-1	0	Ω^{-}	1.672	4	1	-3	0
h_1	1.170	3	0	0	1	N (1675)	1.675	12	1	0	1/2
Σ	1.189	6	1	-1	1	ϕ (1680)	1.680	3	0	0	0
a_1	1.230	9	0	0	1	K^{st} (1680)	1.717	6	0	1	1/2
b_1	1.230	9	0	0	1	\overline{K} * (1680)	1.717	6	0	-1	1/2
Δ	1.232	16	1	0	3/2	N (1680)	1.685	12	1	0	1/2
f_2	1.270	5	0	0	0	$ ho_{3}$ (1690)	1.688	21	0	0	1
K_1	1.273	6	0	1	1/2	Λ (1690)	1.690	4	1	-1	0
\overline{K}_1	1.273	6	0	-1	1/2	王 (1690)	1.690	8	1	-2	1/2
f_1	1.285	3	0	0	1	ho (1700)	1.720	9	0	0	1
η (1295)	1.295	1	0	0	0	N (1700)	1.700	8	1	0	1/2
π (1300)	1.300	3	0	0	1	$\Delta(1700)$	1.700	16	1	0	3/2

How many resonances do we include?

With different mass cutoffs we can separate the contributions of different particles

No visible difference between cuts at 2 GeV and 2.5 GeV in our temperature regime

 \clubsuit We include all resonances with $M \leq$ 2.5 GeV

 $ightarrow \simeq 170$ different masses \leftrightarrow 1500 resonances

Discretization effects

Firb

C. W. Bernard et al., PRD (2001), C. Aubin et al., PRD (2004), A. Bazavov et al., 0903.3598.

Claudia Ratti

Hadron masses

Firb

Non-strange baryons and mesons:

$$r_1m = r_1m_0 + \frac{a_1(r_1m_\pi)^2}{1+a_2x} + \frac{b_1x}{1+b_2x}, \qquad x = (\frac{a}{r_1})^2$$

Strange baryons and mesons:

$$r_{1} \cdot m_{\Lambda}(a, m_{\pi}) = r_{1}m_{\Lambda}^{phys} + \frac{2}{3}\frac{a_{1}(r_{1}m_{\pi})^{2}}{1+a_{2}x} + \frac{b_{1}x}{1+b_{2}x} + \frac{r_{1} \cdot (m_{\Lambda}^{phys} - m_{p}^{phys})}{1+a_{2}x} \left(\frac{m_{s}}{m_{s}^{phys}}\right),$$

$$r_{1} \cdot m_{\Sigma}(a, m_{\pi}) = r_{1}m_{\Sigma}^{phys} + \frac{1}{3}\frac{a_{1}(r_{1}m_{\pi})^{2}}{1+a_{2}x} + \frac{b_{1}x}{1+b_{2}x} + \frac{r_{1} \cdot (m_{\Sigma}^{phys} - m_{p}^{phys})}{1+a_{2}x} \left(\frac{m_{s}}{m_{s}^{phys}}\right),$$

$$r_{1} \cdot m_{\Xi}(a, m_{\pi}) = m_{\Xi}^{phys} + \frac{1}{3}\frac{a_{1}(r_{1}m_{\pi})^{2}}{1+a_{2}x} + \frac{b_{1}x}{1+b_{2}x} + \frac{r_{1} \cdot (m_{\Xi}^{phys} - m_{p}^{phys})}{1+a_{2}x} \left(\frac{m_{s}}{m_{s}^{phys}}\right),$$

$$r_{1}m_{\Omega}(a, m_{\pi}) = r_{1}m_{\Omega}^{phys} + a_{1}(r_{1}m_{\pi})^{2} - a_{1}(r_{1}m_{\pi}^{phys})^{2} + b_{1}x + (m_{\Omega}^{phys} - m_{\Delta}^{phys}) \cdot 1.02x$$

- Distorted spectrum implemented in the HRG model
- Assumption: all resonances behave as their fundamental states
- P. Huovinen and P. Petreczky (2009).

Results: strangeness susceptibilities

Firb

HRG results in good agreement with stout action

- asqtad and p4 results show similar shape but shift in temperature
 - HRG results with corresponding distorted spectrum reproduce asqtad and p4 results

S. Borsanyi et al., JHEP1009 (2010)

Results: subtracted chiral condensate

$$\langle \bar{\psi}\psi \rangle_s = \langle \bar{\psi}\psi \rangle_{s,0} + \langle \bar{\psi}\psi \rangle_K + \sum_{i \in mesons} \frac{\partial \ln Z_{m_i}^M}{\partial m_i} \frac{\partial m_i}{\partial m_s} + \sum_{i \in baryons} \frac{\partial \ln Z_{m_i}^B}{\partial m_i} \frac{\partial m_i}{\partial m_s}.$$

• $\frac{\partial m_i}{\partial m_s}$ from fit to lattice data Camalich, Geng and Vacas (2010)

S. Borsanyi et al., JHEP1009 (2010)

Firb

Results: trace anomaly

Firb

Very good agreement between HRG and lattice results

Inclusion of exponential spectrum in HRG model

Firb

- For large masses few states are known experimentally
- Inclusion of exponentially growing hadron mass spectrum
 - J. Noronha-Hostler, C. Greiner, I. Shovkovy (2008); J. Noronha-Hostler, M. Beitel, C. Greiner, I. Shovkovy (2010)
- igoplus Agreement between lattice and HRG improved up to $T\sim 155~{
 m MeV}$
 - (A. Majumder, B. Müller: 1008.1747)

Open questions

Firb

- Up to which temperature should we describe the system in terms of the HRG model?
- $rac{T_c} \simeq 155 \text{ MeV}$, transition is a crossover
 - \blacksquare one should expect deviations from HRG already below T_c

