Heavy-flavor dynamics in nucleus–nucleus collisions: from RHIC to LHC

Marco Monteno

INFN Torino

27 May 2011

work done in collaboration with:

W.M. Alberico, A. Molinari (DFT Univ. Torino and INFN Torino),
A. Beraudo (Centro Studi e Ricerche “Enrico Fermi” and CERN),
A. De Pace, M. Nardi, F. Prino (INFN Torino)

Ref: W. M. Alberico et al. “Heavy-flavour spectra in high-energy nucleus–nucleus collisions”, arXiv:1101.6008 [hep-ph], accepted for publication by EPJ C
Outline

- **Heavy quarks as** hard **probes of the Quark Gluon Plasma.**
- **Theoretical framework:**
 - the relativistic Langevin equation in an expanding medium
 - evaluation of the transport coefficients
- **Numerical results of a full simulation**
 for RHIC (200 GeV) and LHC (2.76 and 5.5 TeV):
 from the initial $Q\bar{Q}$ production to the final D, B and e-spectra:
 - Invariant yields $E(dN/d^3p)$: pp vs AA
 - Nuclear modification factor $R_{AA}(p_T)$
 - Elliptic flow coefficient $v_2(p_T)$
- **Discussion of results:**
 comparison with PHENIX data and predictions for LHC.
Heavy quarks are produced in **hard pQCD processes** at **very early times** of a heavy-ion collision. Then, when crossing the expanding fireball, **heavy quarks lose their energy and perform multiple collisions with the medium.**

1. N. Armesto, C.A. Salgado and U.A. Wiedemann, Phys. Rev. D 69, 114003
Heavy quarks as hard probes of QGP

- Heavy quarks are produced in hard pQCD processes at very early times of a heavy-ion collision. Then, when crossing the expanding fireball, heavy quarks lose their energy and perform multiple collisions with the medium.
- Therefore p_T spectra of D, B hadrons and of the electrons from their semi-leptonic decays are a good probe to perform QGP diagnostic, since they provide a measure of the energy dissipation (quenching) of heavy quarks while propagating in the hot QCD matter.

1. N. Armesto, C.A. Salgado and U.A. Wiedemann, Phys. Rev. D 69, 114003
Heavy quarks as hard probes of QGP

- Heavy quarks are produced in hard pQCD processes at very early times of a heavy-ion collision. Then, when crossing the expanding fireball, heavy quarks lose their energy and perform multiple collisions with the medium.

- Therefore p_T spectra of D, B hadrons and of the electrons from their semi-leptonic decays are a good probe to perform QGP diagnostic, since they provide a measure of the energy dissipation (quenching) of heavy quarks while propagating in the hot QCD matter.

- However, the energy lost by heavy quarks through soft gluon radiation is expected to be depleted. Because of the large quark-mass, the spectrum of radiated gluons was shown\(^1\) to be suppressed at large energy.

\(^1\) N. Armesto, C.A. Salgado and U.A. Wiedemann, Phys. Rev. D 69, 114003
If soft-gluon radiation were the only energy loss mechanism, we would expect p_T spectra of heavy quark hadrons (and their decay electrons) much less quenched. Such expectation was wiped away by RHIC data!
If soft-gluon radiation were the only energy loss mechanism, we would expect p_T spectra of heavy quark hadrons (and their decay electrons) much less quenched. Such expectation was wiped away by RHIC data!

Substantial suppression of heavy-flavor non-photonic electrons, on the same level as that one of light hadrons.
Heavy quark energy loss versus RHIC data

- If soft-gluon radiation were the only energy loss mechanism, we would expect p_T spectra of heavy quark hadrons (and their decay electrons) much less quenched. **Such expectation was wiped away by RHIC data!**

- Substantial suppression of heavy-flavor non-photonic electrons, on the same level as that one of light hadrons.

- Disagreement with the predictions of radiative energy loss models, with realistic values of gluon density.
If soft-gluon radiation were the only energy loss mechanism, we would expect p_T spectra of heavy quark hadrons (and their decay electrons) much less quenched. Such expectation was wiped away by RHIC data!

Substantial suppression of heavy-flavor non-photonic electrons, on the same level as that one of light hadrons.

Disagreement with the predictions of radiative energy loss models, with realistic values of gluon density.

Different approaches were proposed to explain RHIC results, taking into account also collisions of heavy quarks with plasma particles.
The relativistic Langevin equation

\[\frac{\Delta p_i}{\Delta t} = -\eta_D(p)p^i + \xi^i(t) , \]

\(\text{determ.} \quad \text{stochastic} \)
The relativistic Langevin equation

\[\frac{\Delta p^i}{\Delta t} = -\eta_D(p)p^i + \xi^i(t), \]

with the properties of the noise encoded in

\[\langle \xi^i(p_t)\xi^j(p_{t'}) \rangle = b^{ij}(p_t)\frac{\delta_{tt'}}{\Delta t} \quad b^{ij}(p) \equiv \kappa_L(p)p^i\hat{p}^j + \kappa_T(p)(\delta^{ij} - \hat{p}^i\hat{p}^j) \]
The relativistic Langevin equation

\[
\frac{\Delta p^i}{\Delta t} = -\eta_D(p)p^i + \xi^i(t),
\]

with the properties of the noise encoded in

\[
\langle \xi^i(p_t)\xi^j(p_{t'}) \rangle = b^{ij}(p_t)\frac{\delta_{tt'}}{\Delta t}
\]

\[
b^{ij}(p) \equiv \kappa_L(p)\hat{p}^i\hat{p}^j + \kappa_T(p)(\delta^{ij} - \hat{p}^i\hat{p}^j)
\]

Transport coefficients to calculate:

- **Momentum diffusion** \(\kappa_T = \frac{1}{2} \langle \Delta p_T^2 \rangle / \Delta t\) and \(\kappa_L = \langle \Delta p_L^2 \rangle / \Delta t\);
The relativistic Langevin equation

\[\frac{\Delta p^i}{\Delta t} = - \eta_D(p)p^i + \xi^i(t), \]

determ. stochastic

with the properties of the noise encoded in

\[\langle \xi^i(p_t)\xi^j(p_{t'}) \rangle = b^{ij}(p_t) \frac{\delta_{tt'}}{\Delta t} \]

\[b^{ij}(p) \equiv \kappa_L(p) \hat{p}^i \hat{p}^j + \kappa_T(p)(\delta^{ij} - \hat{p}^i \hat{p}^j) \]

Transport coefficients to calculate:

- **Momentum diffusion** \(\kappa_T \equiv \frac{1}{2} \frac{\langle \Delta p_T^2 \rangle}{\Delta t} \)
 and \(\kappa_L \equiv \frac{\langle \Delta p_L^2 \rangle}{\Delta t} \);

- **Friction** term (dependent on the discretization scheme!)

\[\eta_D^{\text{Ito}}(p) = \frac{\kappa_L(p)}{2TE_p} - \frac{1}{E_p^2} \left[(1 - v^2) \frac{\partial \kappa_L(p)}{\partial v^2} + \frac{d - 1}{2} \frac{\kappa_L(p) - \kappa_T(p)}{v^2} \right] \]
The relativistic Langevin equation

\[\frac{\Delta p^i}{\Delta t} = -\eta_D(p)p^i + \xi^i(t), \]

with the properties of the noise encoded in

\[\langle \xi^i(p_t)\xi^j(p_{t'}) \rangle = b^{ij}(p_t)\frac{\delta_{tt'}}{\Delta t} \]

\[b^{ij}(p) = \kappa_L(p)\hat{p}^i\hat{p}^j + \kappa_T(p)(\delta^{ij} - \hat{p}^i\hat{p}^j) \]

Transport coefficients to calculate:

- **Momentum diffusion** \(\kappa_T = \frac{1}{2} \frac{\langle \Delta p^2_T \rangle}{\Delta t} \) and \(\kappa_L = \frac{\langle \Delta p^2_L \rangle}{\Delta t} \);

- **Friction** term (dependent on the discretization scheme!)

\[\eta_D^{\text{Ito}}(p) = \frac{\kappa_L(p)}{2TE_p} - \frac{1}{E_p^2} \left[(1 - v^2) \frac{\partial \kappa_L(p)}{\partial v^2} + \frac{d - 1}{2} \frac{\kappa_L(p) - \kappa_T(p)}{v^2} \right] \]

fixed in order to insure the approach to equilibrium (**Einstein relation**): \(\text{Langevin eq.} \Leftrightarrow \text{Fokker Planck eq. with steady solution exp}(\frac{-E_p}{T}) \)
Evaluation of transport coefficients $\kappa_{T/L}(p)$

The interaction rate (from the squared matrix element of the process) must be weighted by the squared transverse/longitudinal exchanged momentum.

The interaction rate (from the squared matrix element of the process) must be weighted by the squared transverse/longitudinal exchanged momentum.

Intermediate cutoff $|t|^* \sim m_D^2$ introduced to separate the contributions of

\[\text{Similar strategy for the evaluation of } dE/dx \text{ in S. Peigne and A. Peshier, Phys.Rev.D77:114017 (2008).} \]
The interaction rate (from the squared matrix element of the process) must be weighted by the squared transverse/longitudinal exchanged momentum.

Intermediate cutoff $|t|^* \sim m_D^2$ introduced to separate the contributions of

- **soft collisions** ($|t| < |t|^*$): Hard Thermal Loop (HTL) approximation in a weak-coupling scenario, with the running coupling constant $g(\mu)$ taken at a scale $\mu \sim T$, the Debye screening mass m_D preventing infrared divergencies.

The interaction rate (from the squared matrix element of the process) must be weighted by the squared transverse/longitudinal exchanged momentum.

\[|t|^* \sim m_D^2 \]

Intermediate cutoff introduced to separate the contributions of

- **soft collisions** \(|t| < |t|^*\): Hard Thermal Loop (HTL) approximation in a weak-coupling scenario, with the running coupling constant \(g(\mu) \) taken at a scale \(\mu \sim T \), the Debye screening mass \(m_D \) preventing infrared divergencies.

- **hard collisions** \(|t| > |t|^*\): kinetic pQCD calculation

Two calculations, with \(g(\mu) \) evaluated at:

\[\mu \sim T \] , as for the soft component \((HTL1)\)

\[\mu = |t| = -Q^2 \] \((HTL2)\)

Transport coefficients $\kappa_{T/L}(p)$: hard contribution

$$\kappa_{T}^{g/q_{(\text{hard})}} = \frac{1}{2} \frac{1}{2E} \int_{k} \frac{n_{B/F}(k)}{2k} \int_{k'} \frac{1 \pm n_{B/F}(k')}{2k'} \int_{p'} \frac{1}{2E'} \theta(|t| - |t|^*) \times$$

$$\times (2\pi)^{4} \delta^{(4)}(P + K - P' - K') \left| \mathcal{M}_{g/q}(s, t) \right|^{2} q_{T}^{2}$$

$$\kappa_{L}^{g/q_{(\text{hard})}} = \frac{1}{2E} \int_{k} \frac{n_{B/F}(k)}{2k} \int_{k'} \frac{1 \pm n_{B/F}(k')}{2k'} \int_{p'} \frac{1}{2E'} \theta(|t| - |t|^*) \times$$

$$\times (2\pi)^{4} \delta^{(4)}(P + K - P' - K') \left| \mathcal{M}_{g/q}(s, t) \right|^{2} q_{L}^{2}$$

where: $|t| \equiv q^{2} - \omega^{2}$
Transport coefficients $\kappa_{T/L}(p)$: soft contribution

When the exchanged 4-momentum is soft the t-channel gluon feels the presence of the medium and requires resummation.
Transport coefficients $\kappa_{T/L}(p)$: soft contribution

When the exchanged 4-momentum is soft the t-channel gluon feels the presence of the medium and requires resummation.

The blob represents the effective gluon propagator, which has a longitudinal and a transverse component:

$$\Delta_L(z, q) = \frac{-1}{q^2 + \Pi_L(z, q)}, \quad \Delta_T(z, q) = \frac{-1}{z^2 - q^2 - \Pi_T(z, q)}$$

where medium effects are embedded in the HTL gluon self-energy.
Transport coefficients $\kappa_{T/L}(p)$: numerical results

Combining together the hard and soft contributions:

$$\kappa_{L/T}(p) \equiv \kappa_{L/T}^{\text{soft}} + \kappa_{L/T}^{\text{hard}}$$

- The dependence on the intermediate cutoff $|t|^*$ is very mild.
- Larger growth with p of κ_L with respect to κ_T.
- Slower increase with p of κ_L in the calculation HTL2 with respect to HTL1.
Implementation of a full simulation including Langevin evolution of heavy quarks in QGP

1. Initial generation of $Q\bar{Q}$ pairs with POWHEG (pQCD@NLO), and with EPS09 nuclear corrections to parton distributions (both at NLO accuracy); in addition, included Cronin effect (k_T broadening).

Heavy quark position distributed in the transverse plane according to nuclear geometry, in a Glauber framework.

Langevin evolution in the QGP: at each step $u_\mu(x)$ and $T(x)$ are given by hydro codes, and used to evaluate transport coefficients of the expanding fluid and to update position and 4-momentum of the heavy quark.

At T_c HQs are made hadronize. Fragmentation is performed by sampling hadron species from experimental branching-fractions, and by sampling momentum from a Peterson parametrization of fragmentation function;

Finally, heavy quark hadrons are made decay into electrons, by using the PYTHIA decayer with an updated version of branching-ratios table based on 2010 PDG review.
Initial generation of $Q\bar{Q}$ pairs with POWHEG (pQCD@NLO), and with EPS09 nuclear corrections to parton distributions (both at NLO accuracy); in addition, included Cronin effect (k_T broadening).

Heavy quark position distributed in the transverse plane according to nuclear geometry, in a Glauber framework.
Implementation of a full simulation including Langevin evolution of heavy quarks in QGP

1. Initial generation of $Q\bar{Q}$ pairs with POWHEG (pQCD@NLO), and with EPS09 nuclear corrections to parton distributions (both at NLO accuracy); in addition, included Cronin effect (k_T broadening).

2. Heavy quark position distributed in the transverse plane according to nuclear geometry, in a Glauber framework.

3. Langevin evolution in the QGP: at each step $u^\mu(x)$ and $T(x)$ are given by hydro codes, and used to evaluate transport coefficients of the expanding fluid and to update position and 4-momentum of the heavy quark.

4. At T_c HQs are made hadronize. Fragmentation is performed by sampling hadron species from experimental branching-fractions, and by sampling momentum from a Peterson parametrization of fragmentation function;

5. Finally, heavy quark hadrons are made decay into electrons, by using the PYTHIA decayer with an updated version of branching-ratios table based on 2010 PDG review.
Implementation of a full simulation including Langevin evolution of heavy quarks in QGP

1. Initial generation of $Q \overline{Q}$ pairs with POWHEG (pQCD@NLO), and with EPS09 nuclear corrections to parton distributions (both at NLO accuracy); in addition, included Cronin effect (k_T broadening).

2. Heavy quark position distributed in the transverse plane according to nuclear geometry, in a Glauber framework.

3. Langevin evolution in the QGP: at each step $u^\mu(x)$ and $T(x)$ are given by hydro codes, and used to evaluate transport coefficients of the expanding fluid and to update position and 4-momentum of the heavy quark.

4. At T_c HQs are made hadronize. Fragmentation is performed by sampling hadron species from experimental branching-fractions, and by sampling momentum from a Peterson parametrization of fragmentation function;
Implementation of a full simulation including Langevin evolution of heavy quarks in QGP

1. Initial generation of $Q\overline{Q}$ pairs with POWHEG (pQCD@NLO), and with EPS09 nuclear corrections to parton distributions (both at NLO accuracy); in addition, included Cronin effect (k_T broadening).

2. Heavy quark position distributed in the transverse plane according to nuclear geometry, in a Glauber framework.

3. Langevin evolution in the QGP: at each step $u^\mu(x)$ and $T(x)$ are given by hydro codes, and used to evaluate transport coefficients of the expanding fluid and to update position and 4-momentum of the heavy quark.

4. At T_c HQs are made hadronize. Fragmentation is performed by sampling hadron species from experimental branching-fractions, and by sampling momentum from a Peterson parametrization of fragmentation function;

5. Finally, heavy quark hadrons are made decay into electrons, by using the PYTHIA decayer with an updated version of branching-ratios table based on 2010 PDG review.
Analysis strategy

3 energies; 5 centrality intervals + Minimum Bias

- **RHIC** 200 GeV pp, Au-Au ⇒ comparison to PHENIX R_{AA}^e and v_2^e
- **LHC** 5.5 TeV pp, Pb-Pb
- **LHC** 2.76 TeV pp, Pb-Pb only 1 central bin (0-10%) + Min.Bias (0-80%)
Analysis strategy

3 energies; 5 centrality intervals + Minimum Bias

- RHIC 200 GeV pp, Au-Au ⇒ comparison to PHENIX R_{AA}^e and v_2^e
- LHC 5.5 TeV pp, Pb-Pb
- LHC 2.76 TeV pp, Pb-Pb only 1 central bin (0-10%) + Min.Bias (0-80%)

Analyzed cases for different choices of input parameters and hydro code

- μ scale in HTL calculation of κ_{soft}: $\mu = \frac{1}{2} \pi T$
- QGP thermalization time τ_0
- viscous/ideal hydrodynamics code
- μ scale in pQCD calculation of κ_{hard}; HTL1 or HTL2 (only for LHC at 2.76 TeV)
Analysis strategy

3 energies; 5 centrality intervals + Minimum Bias

- RHIC 200 GeV pp, Au-Au ⇒ comparison to PHENIX R_{AA}^e and v_2^e
- LHC 5.5 TeV pp, Pb-Pb
- LHC 2.76 TeV pp, Pb-Pb only 1 central bin (0-10%) + Min.Bias (0-80%)

Analyzed cases for different choices of input parameters and hydro code

- μ scale in HTL calculation of κ_{soft}: $\mu = \frac{1}{\pi} T \div 2 \pi T$
- QGP thermalization time τ_0
- Viscous/ideal hydrodynamics code
- μ scale in pQCD calculation of κ_{hard}; HTL1 or HTL2 (only for LHC at 2.76 TeV)

Results: contributions from c, b and from their weighted combination (c+b)

- Invariant p_T spectra (in pp and AA)
- R_{AA}^e and $R_{AA}^{D,B}$ for D,B hadrons
- v_2^e and $v_2^{D,B}$ for D,B hadrons

Acceptance cuts: $|\eta| < 0.35/0.9$ (PHENIX/ALICE)
Some systematics on R_{AA}

Heavy-quark R_{AA} (at RHIC): role of the coupling
charm: thin lines, bottom: thick lines

Strong dependence on the scale μ at which the coupling $\alpha_s(\mu)$ is evaluated ($\mu = 1\pi \, T \div 2\pi \, T$): at $T = 200$ MeV $\alpha_s \approx 0.34$ and 0.63.

In the following we will focus on $\mu = 1.5\pi \, T$.
Some systematics on R_{AA}

Heavy-quark R_{AA} (at RHIC): role of hydrodynamics
charm: thin lines, bottom: thick lines

The dependence on the selected hydrodynamical scenario \(^3\) appears very mild.

Some systematics on R_{AA}

Effects of fragmentation and decays: $h_{c/b}$ and $e_{c/b}$

charm: thin lines, bottom: thick lines

Fragmentation and semileptonic decays lead to a quenching of R_{AA}
PHENIX data on the invariant differential cross section of electrons from heavy-flavour decay in *pp* collisions at $\sqrt{s} = 200$ GeV are nicely reproduced by POWHEG, both in shape and in absolute magnitude.

(default POWHEG values $\mu_R/F = m_T$, $m_{c/b}=1.5/4.8$ GeV; CTEQ6M(NLO) PDFs)
PHENIX data on the invariant differential cross section of electrons from heavy-flavour decay in \textit{pp} collisions at $\sqrt{s}=200$ GeV are nicely reproduced by POWHEG, both in shape and in absolute magnitude.

The discrepancy between data and theory decreases, at the level of 12\%, when we include transverse momentum broadening.

(default POWHEG values $\mu_{R/F}=m_T$, $m_{c/b}=1.5/4.8$ GeV; CTEQ6M(NLO) PDFs)
HQ single-electron spectra: AuAu results at RHIC

Dashed curves: pp result scaled by $\langle N_{\text{coll}} \rangle$;
Continuous curves: AA result after Langevin (viscous hydro, $\tau_0=1$ fm).
Fair description of PHENIX data over many orders of magnitude!
Viscous hydro, $\tau_0=1$ fm, $\mu = 1.5\pi T$.
Viscous hydro, \(\tau_0 = 1 \text{ fm}, \mu = 1.5\pi T \).

For large \(p_T (p_T \gtrsim 3 \text{ GeV/c}) \) our results turn out to be on the whole in agreement with the pattern of the data from PHENIX, with an evident contribution from the bottom.
Results on $R_{AA}(\text{elec})$ at RHIC/PHENIX

- **Viscous hydro, $\tau_0=1$ fm, $\mu = 1.5\pi T$.**
- For large p_T ($p_T \gtrsim 3$ GeV/c) our results turn out to be on the whole in agreement with the pattern of the data from PHENIX, with an evident contribution from the bottom.
- At low p_T ($p_T \lesssim 3$ GeV/c) the data are underestimated. That could be a consequence of the adopted hadronization scheme (parameterization of pure fragmentation, with no contribution from coalescence).
plots done using the *integrated yields*;

- parameter set: $\mu = 3\pi T/2$ and viscous hydro with $\tau_0 = 1$ fm;

- similar general trend (medium softens the spectrum conserving N_e^{tot})
 - $p_T > 0.3$ GeV/c: flat $R_{AA} \sim 1$ ($R_{AA} \neq 1$ at LHC due to nPDFs!)
Elliptic flow of heavy-flavor electrons at RHIC

RHIC 0-92 %

\[v_2 \text{ with hot-QCD + fragmentation results a bit underestimated; } \]

\[\text{slightly better agreement with } \tau_0 = 0.1 \text{ fm; } \]

\[v_2 \text{ could be increased by coalescence (not included here). } \]
Results on $R_{AA}(\text{elec})$ at LHC(2.76 TeV)

- General features of R_{AA} appear similar to those at RHIC.
- Both charm and bottom are more suppressed.
General features of R_{AA} appear similar to those at RHIC.

Both charm and bottom are more suppressed.

For the centrality interval 0-80 % (an approximation of a minimum bias sample) results obtained in the scenario HTL2 display a flattening and a higher value of R_{AA} (less quenching) above $p_T > 2 \div 4$ GeV/c.
Results on $R_{AA}(D,B)$ at LHC(2.76 TeV)

\[R_{AA} \]

\[p_T \text{ (GeV/c)} \]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14 \]

\[D \quad B \]

\[0-10\% \quad 0-80\% \]

\[\{ \text{HTL1} \} \]

Marco Monteno (INFN Torino)
Results on $R_{AA}(D,B)$ at LHC(2.76 TeV)

![Graph showing R_{AA} vs. p_T for different centrality classes and flavors.]
Elliptic flow of electrons and D,B hadrons at LHC (2.76 TeV)

hadrons (left panel) vs electrons (right panel)

Charm has a much larger elliptic flow with respect to RHIC

Modest elliptic flow of bottom
Charm has a much larger elliptic flow with respect to RHIC

Modest elliptic flow of bottom

Calculation HTL2 displays a lower saturation value of v_2, especially for electrons.
The relativistic Langevin equation is a powerful tool to study the HQ dynamics in the QGP.
Summary and outlook

- The relativistic Langevin equation is a powerful tool to study the HQ dynamics in the QGP.
- The required transport coefficients $\kappa_{T/L}(p)$ have been evaluated considering only $2 \rightarrow 2$ collisions and distinguishing soft and hard scatterings, with the aim of delivering a benchmark weak-coupling calculation. However....
Summary and outlook

- The relativistic Langevin equation is a powerful tool to study the HQ dynamics in the QGP.
- The required transport coefficients $\kappa_{T/L}(p)$ have been evaluated considering only $2 \rightarrow 2$ collisions and distinguishing soft and hard scatterings, with the aim of delivering a benchmark weak-coupling calculation. However....
- For large p_T ($p_T \gtrsim 3$ GeV/c) it is possible to accommodate RHIC data for the single-electron spectra: actual values of the transport coefficients should not be too far from our estimates.
Summary and outlook

• The relativistic Langevin equation is a powerful tool to study the HQ dynamics in the QGP

• The required transport coefficients $\kappa_T/L(p)$ have been evaluated considering only $2 \rightarrow 2$ collisions and distinguishing soft and hard scatterings, with the aim of delivering a benchmark weak-coupling calculation. However....

• for large p_T ($p_T \gtrsim 3$ GeV/c) it is possible to accommodate RHIC data for the single-electron spectra: actual values of the transport coefficients should not be too far from our estimates.

• Preliminary results for the LHC were presented, both for electrons and D/B mesons yields. Comparison with fresh data from the experiments is welcome!
The relativistic Langevin equation is a powerful tool to study the HQ dynamics in the QGP

- The required transport coefficients $\kappa_{T/L}(p)$ have been evaluated considering only $2 \rightarrow 2$ collisions and distinguishing soft and hard scatterings, with the aim of delivering a benchmark weak-coupling calculation. However....
- for large p_T ($p_T > 3$ GeV/c) it is possible to accommodate RHIC data for the single-electron spectra: actual values of the transport coefficients should not be too far from our estimates.
- Preliminary results for the LHC were presented, both for electrons and D/B mesons yields. Comparison with fresh data from the experiments is welcome!

Results of our study are in support of reconsidering the relevance of collisional energy loss in describing heavy-quark propagation in-medium.
Back-up slides
initial $Q\bar{Q}$ production (from POWHEG)

<table>
<thead>
<tr>
<th>$\sqrt{s_{NN}}$ (GeV)</th>
<th>$\sigma_{c\bar{c}}^{pp}$ (mb)</th>
<th>$\sigma_{c\bar{c}}^{AA}$ (mb)</th>
<th>$\sigma_{b\bar{b}}^{pp}$ (mb)</th>
<th>$\sigma_{b\bar{b}}^{AA}$ (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.254</td>
<td>0.236</td>
<td>1.77×10^{-3}</td>
<td>2.03×10^{-3}</td>
</tr>
<tr>
<td>2.76 TeV</td>
<td>1.947</td>
<td>1.513</td>
<td>0.091</td>
<td>0.085</td>
</tr>
<tr>
<td>5.5 TeV</td>
<td>3.015</td>
<td>2.288</td>
<td>0.187</td>
<td>0.169</td>
</tr>
</tbody>
</table>

Huge *shadowing effects* (EPS09-NLO) for $c\bar{c}$ production in Pb-Pb @ LHC!
Glauber and k_{\perp} broadening

Each HQ is given a k_{\perp}-kick extracted from a gaussian distribution with

$$\langle k^2 \rangle_{AB}(\vec{b}, \vec{s}) = \langle k^2 \rangle_{pp} + \frac{a_{gN}}{2} \left[\int dz_A \rho_A(\vec{s}, z_A) l_A(\vec{s}, z_A) \right]$$

$$+ \int dz_B \rho_B(\vec{s} - \vec{b}, z_B) l_B(\vec{s} - \vec{b}, z_B)$$

due to the length crossed by the incoming partons in nucleus A/B before the hard event:

$$l_A(\vec{s}, z_A) \equiv \int_{-\infty}^{z_A} dz \rho_A(\vec{s}, z)/\rho_0$$

and

$$l_B(\vec{s} - \vec{b}, z_b) \equiv \int_{z_b}^{+\infty} dz \rho_B(\vec{s} - \vec{b}, z)/\rho_0$$

We choose

<table>
<thead>
<tr>
<th>a_{gN} (GeV2/fm)</th>
<th>SPS</th>
<th>RHIC</th>
<th>LHC (5.5 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>0.072</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td>b</td>
<td>0.197</td>
<td>0.27</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Hydrodynamic codes

To model the effects of an expanding fluid the fields $u^\mu(x)$ and $T(x)$ are taken from the output of two longitudinally boost-invariant hydro codes\(^3\).

- $u^\mu(x)$ used to perform the update each time in the fluid rest-frame;
- $T(x)$ allows to fix at each step the value of the transport coefficients.

<table>
<thead>
<tr>
<th></th>
<th>(\eta/s = 0)</th>
<th>(\eta/s = 0.08)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\tau_0) (fm) (s_0) (fm(^{-3})) (T_0) (MeV)</td>
<td>(\tau_0) (fm) (s_0) (fm(^{-3})) (T_0) (MeV)</td>
</tr>
<tr>
<td>RHIC 200 GeV</td>
<td>0.6 110 357</td>
<td>0.1 8.4 666</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 140 387</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 84 333</td>
</tr>
<tr>
<td>LHC 2.76 TeV</td>
<td></td>
<td>0.6 278 475</td>
</tr>
<tr>
<td>LHC 5.5 TeV</td>
<td>0.1 2438 1000</td>
<td>0.1 1840 854</td>
</tr>
<tr>
<td></td>
<td>0.45 271 482</td>
<td>1 184 420</td>
</tr>
</tbody>
</table>

\(^4\)Hirano, Huovinen and Nara, PRC 83 021902
The easiest Langevin evolution algorithm

Going to the fluid rest-frame:

\[\Delta \vec{p}_n = -\eta_D(\vec{p}_n)\vec{p}_n \Delta \bar{t} + \xi^i(\bar{t}_n)\Delta \bar{t} \equiv -\eta_D(\vec{p}_n)\vec{p}_n \Delta \bar{t} + g^{ij}(\vec{p}_n)\zeta^i(\bar{t}_n)\sqrt{\Delta \bar{t}}, \]

\[\Delta \vec{x}_n = \vec{p}_n / \bar{E}_n \Delta \bar{t} \]

with \(\Delta \bar{t} = 0.02 \text{ fm/c (in the fluid rest-frame!)} \) and

\[g^{ij}(p) \equiv \sqrt{\kappa_{\|}(p)\hat{p}^i \hat{p}^j + \sqrt{\kappa_{\perp}(p)}(\delta^{ij} - \hat{p}^i \hat{p}^j)} \quad \text{and} \quad \langle \zeta^i_n \zeta^j_{n'} \rangle = \delta^{ij} \delta_{nn'} \]

Hence one needs simply to:

- extract three independent random numbers \(\zeta^i \) from a gaussian distribution with \(\sigma = 1 \);
- update the momentum and position of the heavy quark;
- go back to the Lab-frame: \(x_{n+1} \) and \(p_{n+1} \).
Effects of fragmentation

Fragmentation function:

\[\text{Delta } = 0.04 \varepsilon_{\text{Peterson}} \]

\[\text{charm } b = 8.44 \text{ fm} \]

\[\mu = 2\pi \]

\[\text{bottom } b = 8.44 \text{ fm} \]

\[\mu = 2\pi \]

Fragmentation performed with Peterson FF tends to slightly suppress \(R_{AA} \)

- Mild dependence on the parameter \(\epsilon \)
- \(\epsilon = 0.04 \) and 0.005 (for \(c \) and \(b \)) fixed in order to reproduce HQET FFs\(^5\)

Fragmentation fractions taken from DESY results and PDG 2009