Charmonium production measured in PbPb and pp collisions by CMS

– Torsten Dahms –
LLR - École Polytechnique
(for the CMS collaboration)

Why to study charmonia?

In PbPb collisions:

- Debye screening in deconfined phase leads to melting of charmonia
- Different binding energy of bound states and feed down from higher states lead to sequential suppression of J/ψ with increasing temperature
- Measure charmonium yields in PbPb collisions as function of $p_{\rm T}$ and collision centrality
- → characterize QGP

In pp collisions:

- Baseline for heavy ion collisions
- Cross section measurements
- Polarization

2

Muon reconstruction in CMS

- Global muons reconstructed with information from inner tracker and muon stations
- Further muon ID based on track quality (χ^2 , # hits,...)

Muon pairs in pp at $\sqrt{s} = 7$ TeV

J/ψ in pp at $\sqrt{s} = 7$ TeV

J/ψ in pp at $\sqrt{s} = 7$ TeV

6

J/ψ in pp at $\sqrt{s} = 7$ TeV

Torsten Dahms (LLR)

Excited charmonium states in pp

- Feed-down to prompt J/ ψ from ψ and χ_c
- Measured radiative decay of: $\chi_c \rightarrow J/\psi \gamma$

Reconstruct γ conversions:

- Excellent mass resolution
- Separate $\chi_{c,1}$ and $\chi_{c,2}$

Muon pairs in PbPb

J/ ψ in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

- Separate prompt & non-prompt J/ψ
- HI tracking algorithm less efficient at large decay length
 - Smaller efficiency for non-prompt than for prompt J/ψ
 - Effect increases with $\ensuremath{p_{\text{T}}}$
- Efficiencies from Monte Carlo
 - Simulate signal with "realistic" PYTHIA
 - Embed signal in min. bias event simulated with HYDJET (also in data)
 - Validated MC by comparing efficiencies measured with "Tag & Probe" in MC and data

Prompt vs. non-prompt J/ ψ in PbPb

First time that prompt and non-prompt J/ ψ have been separated in heavy ion collisions

Prompt J/ ψ yield vs. p_T and y

- pp from interpolation of RHIC, Tevatron and LHC data
- Large uncertainty on pp interpolation does not allow definite conclusion: Need a real pp reference!

Prompt J/ ψ yield vs. centrality

 pp from interpolation of RHIC, Tevatron and LHC data

- Large uncertainty on pp interpolation due to a p_T > 6.5 GeV/c cut
- Prompt J/ψ: Suppression by factor of 3 in central (0-10%) compared to peripheral (50-100%)
- Peripheral collisions in agreement with lower limit of interpolation
- Need a real pp reference!

Non-prompt J/ ψ yield vs. centrality

- Scaled pp interpolation by measured B-fraction
- Non-prompt J/ψ: Suppression with respect to interpolation
- Need a real pp reference!

Reference: J/ ψ in pp at \sqrt{s} = 2.76 TeV

- 1 week long run at \sqrt{s} = 2.76 TeV in March 2011
- pp data reconstructed with heavy ion algorithm
- Identical cuts used as in heavy ion analysis

Nuclear Modification Factor

Trend to less suppression at forward rapidity

Nuclear Modification Factor

Prompt J/ ψ :

- 0-10% suppressed by factor 5 with respect to pp
- 50-100% suppressed by factor ~1.6

Nuclear Modification Factor

PHENIX data: arXiv:1103.6269

Comparison to J/ψ in AuAu collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- Measured at much lower p_{T}
- Surprising qualitative agreement in centrality dependence
- Suppression in the most central collisions seems the same

Summary

- Suppression of prompt and non-prompt J/ ψ , and Y(1S)
- Strength of the suppression varies:
 - Prompt J/ ψ suppressed the most, $\Upsilon(1S)$ the least (in 0-20%)
 - Non-prompt J/ ψ suppressed due to b-quark quenching?

Quark Matter 2011, Annecy, 23-28 May 2011

J/ψ

- 734 ± 54 J/ψ in full acceptance
- 39 MeV/c² mass resolution
- no sensitivity to ψ' (m=3.686 GeV/c², expect ~20)
- background well described by same-sign pairs → mostly combinatorial background

Prompt vs. non-prompt J/ ψ in PbPb

Also works in the 10% most central collisions

Shadowing

- The parameterizations are:
 - EKS98 (solid)
 - nDSg (dashed)
 - HKN (dot-dashed)
 - EPS08 (dotted)
 - EPS09 (solid lines w/ symbols)
- R. Vogt PRC 81, 044903 (2010)

Tag & Probe

- Tag:
 - High quality muon
- Probe:
 - Track in the muon station
- Passing Probe:
 - Probe that is also reconstructed as global muon (i.e. with a track in the Sitracker)
- Reconstruct J/psi peak in passing probe-tag pairs and in failing probe-tag pairs
- Simultaneous fit to passing and failing probes allows us to measure the efficiency of the inner track reconstruction

