Bersaglio fisso vs collider

- Superiorità del collider per quanto riguarda il \sqrt{s} che si può ottenere
- Tuttavia in esperimenti a bersaglio fisso si ottengono con più facilità luminosità molto elevate, che compensano le sezioni d' urto più piccole che si hanno a √s più basso
- Esempio (con numeri realistici): reazione $J/\psi \rightarrow \mu^+\mu^-$, 1 mese presa dati
- Esperimento: NA50 all' SPS del CERN
 - Fascio di Pb a 158 GeV/nucleone su bersaglio (fisso) di Pb
 - Intensità $I_0 = 10^7 \text{ Pb/s}$
 - Durata burst $t_b = 5 s$
 - $n_b = 3$ burst/min
 - Bersaglio: 7 bersagli di Pb (spessore totale 1 cm)
- •Quante J/ ψ si possono produrre in un mese di presa dati ?

Bersaglio fisso (1)

 La dipendenza da √s della sezione d' urto di produzione è data, in prima approssimazione, dalla formula (empirica) di Schuler

$$\sigma^{pp \to J/\psi X}(s, x_F \ge 0) = \sigma_0 \left(1 - \frac{M_{J/\psi}}{\sqrt{s}} \right)^n \qquad \begin{array}{l} \sigma_0 = 638 \pm 104 \text{ nb} \\ n = 12.0 \pm 0.9 \end{array}$$

• A 158 GeV (laboratorio), si ha $\sqrt{s} = \sqrt{2m_N} \cdot (E + m_N) = 17.2 \text{ GeV}$

• Dunque
$$\sigma^{\text{pp}\to J/\psi X} = 638 \cdot \left(1 - \frac{3.1}{17.2}\right)^{12.0} nb = 58.8 \text{ nb} (\times B_{\mu\mu} = 3.48 \text{ nb})$$

• La luminosità integrata sul tempo , a bersaglio fisso, è data da $L = N_p \cdot N_t$

$$\begin{split} \mathsf{N}_{\mathsf{p}} = \ \mathsf{I}_0 \cdot \mathsf{t}_{\mathsf{b}} \cdot \mathsf{N}_{\mathsf{b}} \cdot (\text{numero di minuti in 1 mese}) &= 10^7 \cdot 5 \cdot 3 \cdot (60 \cdot 24 \cdot 30) \\ &= 6.5 \cdot 10^{-12} \qquad \text{Se } \epsilon_{\mathsf{SPS}} = 0.7 \qquad \mathsf{N}_{\mathsf{p}} = 4.5 \cdot 10^{-12} \end{split}$$

Bersaglio fisso (2)

• N_t è il numero di bersagli per unità di superficie

$$N_{t} = N_{A} \cdot \frac{\rho_{Pb}}{A_{Pb}} \cdot l_{t} = 6.022 \cdot 10^{23} \cdot \frac{11.35}{208} \cdot l = 3.3 \cdot 10^{22} \text{ cm}^{-2}$$

• Dunque L = 4.5 \cdot 10^{12} \cdot 3.3 \cdot 10^{22} = 1.5 \cdot 10^{35} \cdot \text{cm}^{-2}

• Mettendo insieme le varie quantità (e assumendo accettanza 100%)

$$N_{J/\psi} = \sigma_{J/\psi} \cdot L \cdot A = 3.48 \cdot 10^{-9} \cdot 10^{-24} \cdot (208)^2 \cdot 1.5 \cdot 10^{35} \cdot 1 = 2.2 \cdot 10^7$$

$$M_{J/\psi} = \sigma_{J/\psi} \cdot L \cdot A = 3.48 \cdot 10^{-9} \cdot 10^{-24} \cdot (208)^2 \cdot 1.5 \cdot 10^{35} \cdot 1 = 2.2 \cdot 10^7$$

$$M_{J/\psi} = \sigma_{J/\psi} \cdot L \cdot A = 3.48 \cdot 10^{-9} \cdot 10^{-24} \cdot (208)^2 \cdot 1.5 \cdot 10^{35} \cdot 1 = 2.2 \cdot 10^7$$

(i valori tipici di accettanza sono intorno a 0.01)

Quale statistica possiamo ottenere ad un collider ?

Collider

- Un collider come RHIC opera a \sqrt{s} = 200 GeV/nucleone (~ 13 · \sqrt{s}_{SPS})
- La luminosità tipica è L = $2 \cdot 10^{26} \text{ cm}^{-2} \text{ s}^{-1}$ (ioni Au)
- A questa energia si ha $\sigma_{J/\psi}^{pp}(x_F>0) \sim 80 \text{ nb}\left(\sim 25 \cdot \sigma\right)_{/\psi}^{pp}_{SPS}$
- La luminosità integrata è L = $2 \cdot 10^{26} \cdot 86400 \cdot 30 = 5.2 \cdot 10^{32} \text{ cm}^{-2}$ (~ $3.5 \cdot 10^{-3} L_{\text{SPS}}$)
- Mettendo insieme le varie quantità (e assumendo accettanza 100%)

$$N_{J/\psi} = \sigma_{J/\psi} \cdot L \cdot A = 80 \cdot 10^{-9} \cdot 10^{-24} \cdot (197)^2 \cdot 5.2 \cdot 10^{32} \cdot 1 = (1.6 \cdot 10^{-10})^{-10} \cdot 10^{-10} \cdot$$

Quindi $N_{J/\psi (SPS)} / N_{J/\psi (RHIC)} \sim 14$!

(Alcuni) problemi

• Come si ottengono fasci di ioni ?

Qual è l' energia più adatta allo studio della transizione di fase ?

- Nel progettare un esperimento che studia collisioni nucleari, quali sono i parametri critici di cui tenere conto ?
- Anche se si ottiene il QGP, sicuramente non si osserveranno negli esperimenti quark e gluoni liberi ! Le particelle (adroni) che riveleremo nei nostri apparati sono "sensibili" alla fase di QGP ?

Due regimi (asintotici)

- Anticipiamo che i due regimi sono legati all' energia della collisione
- Per essere più quantitativi occorre introdurre alcune variabili cinematiche utili per lo studio di collisioni nucleari (ma non solo !)

Variabili cinematiche

- Consideriamo la semplice reazione $b+a \rightarrow c+X$
- Spesso la particella c può essere considerata come risultante dalla frammentazione della particella b (frammentazione del proiettile)
- Assumendo simmetria azimutale, possiamo scrivere il quadrimomento di c come (c_0 , c_T , c_z), separando parte longitudinale e trasversale
 - Definiamo le quantità

 $C_{+} = C_{0} + C_{z}$ (forward light-cone momentum)

 $C_{-} = C_{0} - C_{z}$ (backward light-cone momentum)

(c₊ è grande per una particella che viaggia nella direzione del fascio)

Introduciamo la variabile

$$x_{+} = \frac{c_0 + c_z}{b_0 + b_z}$$

Se c è figlia di b, allora $x_+ < 1$. Inoltre x_+ è un invariante di Lorentz

Invarianza di x₊

Vogliamo passare dal sistema F al sistema F' che si muove con velocità β lungo l' asse z. La trasformazione di Lorentz si scrive come

$$\begin{pmatrix} E' \\ p'_z \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} E \\ p_z \end{pmatrix}$$

Quindi si ha

$$c'_{0} = \gamma(c_{0} - \beta c_{z})$$

$$c'_{z} = \gamma(c_{z} - \beta c_{0})$$

$$c'_{+} = c'_{0} + c'_{z} = \gamma(1 - \beta)(c_{0} + c_{z}) = \gamma(1 - \beta)c_{+}$$

fattore valido per qualunque particella

E dunque

$$x'_{+} = \frac{c'_{0} + c'_{z}}{b'_{0} + b'_{z}} = \frac{\gamma(1 - \beta)(c_{0} + c_{z})}{\gamma(1 - \beta)(b_{0} + b_{z})} = x_{+}$$

• A energie elevate x_+ è la frazione di momento longitudinale di c rispetto a b

Rapidità

 Un' altra variabile molto utile legata al momento longitudinale è la rapidità y definita come

Rapidità e sistemi di riferimento (1

- La rapidità NON è invariante per trasformazioni di Lorentz, tuttavia la sua legge di trasformazione è molto semplice
- Nel sistema di riferimento F' si avrà

$$y' = \frac{1}{2} \ln \left(\frac{p'_0 + p'_z}{p'_0 - p'_z} \right)$$

• Ma
$$\frac{p'_0 = \gamma(p_0 - \beta p_z)}{p'_z = \gamma(p_z - \beta p_0)}$$
 perciò

$$\frac{1}{2} \left(\frac{\gamma(1 - \beta)(p_0 + p_z)}{p_0 + p_z} \right) = \frac{1}{2} \left(\frac{1 - \beta}{p_0} \right)$$

$$y' = \frac{1}{2} \ln \left(\frac{\gamma (1 - \beta) (p_0 + p_z)}{\gamma (1 + \beta) (p_0 - p_z)} \right) = y + \frac{1}{2} \ln \left(\frac{1 - \beta}{1 + \beta} \right) = y - \frac{1}{2} \ln \left(\frac{1 + \beta}{1 - \beta} \right)$$

- Si ha quindi, semplicemente, $y' = y y_{\beta}$
- Che cos'è y_{β} ? E' la rapidità che una particella avrebbe nel sistema F, se viaggiasse con la velocità β del sistema in movimento

Rapidità e sistemi di riferimento (2)

• Calcoliamo la rapidità di una particella che si muove lungo l' asse z con velocità β . Abbiamo

$$p_0 = \gamma m$$
 $p_z = \gamma \beta m$ quindi $y' = \frac{1}{2} \ln \left(\frac{\gamma m (1+\beta)}{\gamma m (1-\beta)} \right) = \frac{1}{2} \ln \left(\frac{1+\beta}{1-\beta} \right) = y_\beta$

Nota

1

• Per una particella libera si ha (mass-shell condition):

$$p^2 = p^{\mu} p_{\mu} = p_0^2 - \vec{p}^2 = m^2$$

 In questa relazione i gradi di libertà trasversali e longitudinali non sono separati. Si usa allora riscrivere la relazione come:

$$p_0^2 - p_z^2 = m^2 + p_T^2 = m_T^2$$

dove $p_T = \sqrt{p_x^2 + p_y^2}$ e $m_T = \sqrt{m^2 + p_T^2}$
Impulso trasverso Massa trasversa

Altre relazioni utili

- Il quadrimomento di una particella sul mass-shell ha in realtà solo tre gradi di libertà. In fisica degli ioni pesanti, per rappresentarli si usano solitamente y e p_T (integrando sulla variabile azimutale)
- Qual è la relazione tra $(y, p_T) e (p_0, p_z)$?
- Dalla definizione di rapidità $y = \frac{1}{2} \ln \left(\frac{p_0 + p_z}{p_0 p_z} \right)$ si ha

$$e^{y} = \sqrt{\frac{p_{0} + p_{z}}{p_{0} - p_{z}}} e^{-y} = \sqrt{\frac{p_{0} - p_{z}}{p_{0} + p_{z}}}$$
 e sommando

$$e^{y} + e^{-y} = 2\cosh y = \sqrt{\frac{p_{0}^{2} - p_{z}^{2}}{(p_{0} - p_{z})^{2}}} + \sqrt{\frac{p_{0}^{2} - p_{z}^{2}}{(p_{0} + p_{z})^{2}}} = \sqrt{p_{0}^{2} - p_{z}^{2}} \left(\frac{1}{p_{0} - p_{z}} + \frac{1}{p_{0} + p_{z}}\right) = m_{T} \frac{2p_{0}}{m_{T}^{2}}$$

da cui $p_0 = m_T \cosh y$ e, similmente $p_z = m_T \sinh y$

Pseudorapidità

- Sperimentalmente, la misura della rapidità richiede l' identificazione della particella in questione, il che non è sempre agevole, o la misura indipendente di due quantità, come $p_0 e p_z$
- In molti casi, si misura solo l'angolo di emissione delle particelle Si definisce allora la pseudorapidità come

$$\eta = -\log\left[\tan\left(\frac{\theta}{2}\right)\right]$$

• La stessa variabile si può scrivere in funzione dell' impulso, come

$$=\frac{1}{2}\log\left(\frac{|\vec{p}|+p_z}{|\vec{p}|-p_z}\right) \qquad \text{...se uno ricorda la formula} \qquad \tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$$

Si ha infatti
$$\eta = -\log\left(\sqrt{\frac{1-p_z/|\vec{p}|}{1+p_z/|\vec{p}|}}\right) = -\log\left(\sqrt{\frac{|\vec{p}|-p_z}{|\vec{p}|+p_z}}\right)$$

 η

Pseudorapidità (2)

• Dalla trasparenza precedente è chiaro che, per particelle relativistiche

 $p_0 \approx \left| \vec{p} \right| \Rightarrow \eta \approx y$

• Si può comunque esprimere η in funzione di y in modo generale Partiamo da formule simili a quelle già viste per la rapidità

$$e^{\eta} = \sqrt{\frac{|\vec{p}| + p_z}{|\vec{p}| - p_z}} \qquad e^{-\eta} = \sqrt{\frac{|\vec{p}| - p_z}{|\vec{p}| + p_z}}$$

- Sommandole si ottiene $|\vec{p}| = p_T \cosh \eta$
- E sottraendole $p_z = p_T \sinh \eta$
- Usando queste relazioni nelle definizioni di y e η si ottiene.....

Pseudorapidità (3)

$$\begin{aligned} \left| \vec{p} \right|^{2} & y = \frac{1}{2} \log \left[\frac{\sqrt{p_{T}^{2} \cosh^{2} \eta + m^{2}} + p_{T} \sinh \eta}{\sqrt{p_{T}^{2} \cosh^{2} \eta + m^{2}} - p_{T} \sinh \eta} \right] & p_{z} \\ \eta = \frac{1}{2} \log \left[\frac{\sqrt{m_{T}^{2} \cosh^{2} y - m^{2}} + m_{T} \sinh y}{\sqrt{m_{T}^{2} \cosh^{2} y - m^{2}} - m_{T} \sinh y} \right] \end{aligned}$$

Se si misura una distribuzione inclusiva di particelle, vale la relazione

$$\frac{d^2 N}{d\eta dp_T} = \sqrt{1 - \frac{m^2}{m_T^2 \cosh^2 y}} \frac{d^2 N}{dy dp_T}$$

...che prenderemo per buona senza calcolarla esplicitamente Quali sono le conseguenze di questa relazione?

Distribuzioni di η e y

Alcuni valori numerici

 $\Delta v = 10.8$

- Calcoliamo la rapidità di un protone a diverse energie, tipiche degli acceleratori usati per collisioni di ioni pesanti
- Collisione Au-Au all' AGS (14 GeV/nucleone, bersaglio fisso)

 $y_{proj} = \sinh^{-1}(14/0.938) = 3.4$ $y_{targ} = 0$

• Collisione Pb-Pb all' SPS (200 GeV/nucleone, bersaglio fisso

$$y_{proj} = \sinh^{-1} (200/0.938) = 6.1$$
 $y_{targ} = 0$

• Collisione Au-Au a RHIC (100 GeV/nucleone, collider)

$$y_{proj} = \sinh^{-1} (100/0.938) = 5.4$$
 $y_{targ} = -5.4$

• Collisione Pb-Pb all' LHC (2750 GeV/nucleone, collider)

$$y_{proj} = \sinh^{-1}(5500/0.938) = 8.7$$
 $y_{targ} = -8.7$

Evoluzione dei barioni

- Nelle collisioni nucleo-nucleo una frazione importante dell' energia dei nucleoni incidenti viene utilizzata per produrre particelle (pioni in primis)
- L' energia longitudinale viene convertita in energia di particelle prodotte in prossimità del centro di massa della collisione
- In particolare, nella zona a metà strada tra la rapidità del proiettile e del bersaglio, detta regione di rapidità centrale, viene prodotto il maggior numero di particelle (y=0 nel CMS)
- Che ne è dei barioni che costituiscono proiettile e bersaglio (e il cui numero deve necessariamente essere conservato)?
 Intuitivamente devono essere "rallentati"
- Come si modifica la loro distribuzione di rapidità?
 Si può vedere con un semplice modello

Collisioni multiple

 Studiamo un barione che effettua una serie di collisioni inelastiche successive. Tipicamente, dopo ognuna di esse perde una frazione del suo light cone momentum

x_i: frazione dopo i collisioni

 Supponiamo che, dopo il primo urto, la distribuzione di probabilità di x₁ sia una costante

Collisioni multiple(2)

• La rapidità è legata a x_n dalla seguente relazione:

$$x_n = \frac{m_T}{m} e^{y_n - y_B}$$
 (dove y_B è la rapidità iniziale \rightarrow fascio)

• Pertanto $\left(\frac{1}{2}\right) = \frac{m_T}{m} e^{\langle y_n \rangle - y_B}$ e, prendendo il logaritmo

$$n\log\frac{1}{2} = \log\frac{m_T}{m} + \langle y_n \rangle - y_B$$

- Questo implica che $\langle y_{n-1} \rangle \langle y_n \rangle \approx 0.7$
- Ovvero il barione perde in media per ogni collisione circa 1 unità di rapidità. In collisioni nucleone-nucleone (il barione collide 1 volta) si è visto sperimentalmente che $\Delta y \sim 1$

Collisioni multiple(3)

- Supponiamo ora che il barione stia attraversando un nucleo di Au Abbiamo $\rm r_{Au}\sim7~fm$
- Il libero cammino medio di un nucleone all' interno del nucleo è circa

 $1/(\sigma \times \rho) = 1/(30 \text{ mb} \times 0.17 \text{ fm}^{-3}) = 1/(3 \text{ fm}^2 \times 0.17 \text{ fm}^{-3}) \sim 2 \text{ fm}$

- In una collisione centrale si possono avere fino a \sim 7 collisioni
- Mediando sul parametro di impatto questo numero si riduce a ~ 4
- Abbiamo visto che la separazione in rapidità di fascio e bersaglio aumenta con l' energia dei fasci incidenti
- Ciò implica che, a bassa energia, dopo l' urto, i barioni siano praticamente "stoppati" nella zona di rapidità centrale (y=0 nel centro di massa)
- Ad alta energia, invece, la perdita di rapidità non è sufficiente a "concentrare" i barioni nella zona di rapidità centrale

Alcune distribuzioni di rapidità

- Distribuzione di rapidità π⁻ in collisioni Pb-Pb a 40 GeV/nucleone, NA49
- Abbiamo visto che

 $p_z = m_T \sinh y$

- Dunque $y_p = \sinh^{-1}(40/0.938) = 4.44$ $y_b = 0$
- La rapidità centrale è y=2.22 ed è lì che si osserva un massimo nella produzione di particelle (non solo pioni, anche K e altri mesoni)

• In questo range di energia dN/dy è approssimabile ad una gaussiana

Rapidità dei protoni (1)

8 AGeV

Andando da collisioni centrali a periferiche, diminuisce il numero di collisioni subite dai protoni \rightarrow rapidity shift meno importante Collisioni Au-Au a 8 GeV/nucleone

$$y_p = 2.84, y_b = 0$$

 $y_p^{CM} = 1.42, y_b^{CM} = -1.42$

- Le distribuzioni sono compatibili con una somma di 2 gaussiane
- Stiamo osservando

 protoni del bersaglio e
 del proiettile (in parte)
 sovrapposti nella zona
 di rapidità centrale

Rapidità dei protoni (2)

- Si possono ovviamente produrre coppie protone-antiprotone (poco probabile a basse energie)
- La differenza B-antiB è legata al numero barionico
- Evidente svuotamento della regione centrale all' aumentare dell' energia del fascio
- AGS, SPS (20-40 GeV) Regione centrale ricca di barioni
- SPS(80-158 GeV), RHIC Regione centrale povera di barioni

Rapporto antiprotoni/protoni

a.a. 2014

 Il risultato indica che a RHIC una certa frazione del numero barionico viene trasportata dalla rapidità del fascio alla regione centrale

Non siamo ancora in regime di trasparenza...forse a LHC !

Antiprotoni/protoni a LHC

a.a. 2014/2015

Il rapporto pbar/p diventa 1!

Siamo infine in regine di trasparenza, anche in eventi molto periferici

Mappatura del diagramma di fase

• Dalle considerazioni svolte, si vede come all' aumentare dell' energia della collisione diminuisca la densità barionica nella zona di reazione

- Esperimenti ad altissima energia (LHC) ricreano condizioni vicine a quelle dell' Universo primordiale
- Come stimare i valori di T e μ_B effettivamente ottenuti ?

Studio tassi di produzione di particelle nell' ambito di modelli statistici

(Alcuni) problemi

- Come si ottengono fasci di ioni ?
- Qual è l' energia più adatta allo studio della transizione di fase ?

 Nel progettare un esperimento che studia collisioni nucleari, quali sono i parametri critici di cui tenere conto ?

 Anche se si ottiene il QGP, sicuramente non si osserveranno negli esperimenti quark e gluoni liberi ! Le particelle (adroni) che riveleremo nei nostri apparati sono "sensibili" alla fase di QGP ?

• 3 generazioni di esperimenti all' SPS

LEPTONS, PHOTONS