Quarkonia and heavy flavors: where do we stand? What next?

E. Scomparin (INFN-Torino)

Quarkonia → Sensitive to the temperature of QGP

Probing the opacity of QGP → Open heavy quarks
Heavy quark energy loss...

- **Fundamental test** of our understanding of the energy loss mechanism, since ΔE depends on:
 - Properties of the medium
 - Path length

...but should also **critically depend** on the properties of the parton:
- Casimir factor ($C_R^g = 3$, $C_R^q = 4/3$)
- Quark mass (dead cone effect)

\[
\Delta E_{\text{quark}} < \Delta E_{\text{gluon}} \quad \Delta E_b < \Delta E_c < \Delta E_{\text{light q}}
\]

which should imply

\[R_{AA}^B > R_{AA}^D > R_{AA}^\pi\]

with

\[
R_{AA}(p_T) = \frac{1}{\langle N_{\text{coll}} \rangle} \frac{dN_{AA}}{dp_T} / \frac{dN_{pp}}{dp_T}
\]

S. Wicks, M. Gyulassy, JPG35 (2008) 054001
... and elliptic flow

- Due to their large mass, c and b quarks should take longer time (= more re-scatterings) to be influenced by the collective expansion of the medium \(\Rightarrow v_2(b) < v_2(c) \)
- Uniqueness of heavy quarks: cannot be destroyed and/or created in the medium \(\Rightarrow \) Transported through the full system evolution
- **Low/intermediate** \(p_T \): collective motion, thermalization
- **High** \(p_T \): path-length dependence of heavy-quark energy loss

LHC: unprecedented abundance of heavy quarks

Opportunity for a deeper understanding of the underlying physics

![Diagram](image.png)
Pb-Pb and p-Pb: results on D-mesons

- D^0, D^+ and D^{**} R_{AA} agree within uncertainties.

- Strong suppression of prompt D mesons in central collisions → up to a factor of 5 for $p_T \approx 10$ GeV/c.

- Comparison with corresponding results for p-Pb collisions.

- Effect observed in central Pb-Pb due to strong final state effects induced by hot partonic matter.

B. Abelev et al. (ALICE), arXiv:1405.3452.
Pb-Pb and pPb: results on B,D→ muons

- Larger suppression (factor 3-4) in the 10% most central collisions with respect to 40-80% centrality class
- Suppression in the 10% most central Pb-Pb collisions due to a hot matter effect
- No separation of B/D decays

Forward rapidity: 2.5<y<4

B. Abelev et al. (ALICE), PRL109 (2012) 112301
Pb-Pb and pPb: results on B,D→ electrons

- Results available up to $p_T = 18$ GeV/c for central events (EMCAL)
- Clear suppression for central collisions in the studied p_T range
- Stronger suppression for central collisions (hint)
- R_{pPb} compatible with unity within uncertainties
 → Pb-Pb suppression due to final state effects
- No separation D vs B (possible, based on electron impact parameter, but with rather large uncertainties)
Pb-Pb and pPb: results on B,D→ electrons

Central rapidity: |y|<0.6

- Results available up to \(p_T = 18 \) GeV/c for central events (EMCAL)
- Clear suppression for central collisions in the studied \(p_T \) range
- Stronger suppression for central collisions (hint)
- \(R_{pPb} \) compatible with unity within uncertainties
 → Pb-Pb suppression due to final state effects
- No separation D vs B (possible, based on electron impact parameter, but with rather large uncertainties)
Test the **mass ordering** of energy loss

$\Delta E(q,g) > \Delta E(c)$? → Not evident, but...

- Different quark spectrum
- Fragmentation effect

M. Djordjevic, PRL 112, 042302 (2014)
Charm vs beauty

- Comparing direct D results with non-prompt J/ψ
- Similar kinematic range ($\langle p_T \rangle \sim 10$ GeV/c)
- In agreement with expectations $R_{AA}(B) > R_{AA}(D)$
- Comparison with models \rightarrow mass-related effect

- p-Pb results on b \rightarrow small or no effect at backward and forward y
- What about mid-y?
Charm vs beauty

- Comparing direct D results with non-prompt J/ψ
- Similar kinematic range ($\langle p_T \rangle \sim 10$ GeV/c)
- In agreement with expectations $R_{AA}(B) > R_{AA}(D)$
- Comparison with models → mass-related effect

- p-Pb results on b → small or no effect at backward and forward y
- What about mid-y?
Direct B in p-Pb (mid-y)

- Use FONLL for pp reference cross section
- R_{pA}^{FONLL} is compatible with unity for all three B-mesons

$$B^+ \rightarrow J/\psi \ K^+$$
$$B^0 \rightarrow J/\psi \ K^*$$
$$B_S \rightarrow J/\psi \ \phi$$

$$\langle p_T \rangle > 10 \ \text{GeV/c}$$
R_{pPb} & R_{AA} for jets and b jets

- Discriminating variable → Flight distance of the secondary vertex
- b-jet fraction → template fits to secondary vertex inv. mass distributions
- b-jet R_{AA} is much smaller than R_{pPb} → strong in-medium effects
- No jet modification in p-Pb collisions
- No flavour dependence of the effect

S. Chatrchyan et al. (CMS), arXiv:1312.4198
D-meson and HFE/HFM v_2

- First measurements of charm anisotropy in heavy-ion collisions

- Similar amount of v_2 for D-mesons and charged pions
- Similar v_2 values for HF decay muons and HF decay electrons (different y)
- All channels show positive v_2 ($>3 \sigma$ effect)

Information on the initial azimuthal anisotropy transferred to charm quarks
Open charm: model comparisons

- Simultaneous measurement/description of v_2 and R_{AA}
 - Understanding heavy quark transport coefficient of the medium

- Wealth of theory calculations
 - Main features correctly reproduced
 - Simultaneous comparison with v_2 and R_{AA} gives strong constraint to the models \(\rightarrow\) still challenging!

B. Abelev et al. (ALICE), arXiv:1405.2001
Open charm/beauty: short summary

- **Abundant** heavy flavour production at the LHC
 - Allows for **precision** measurements
- **Can separate charm and beauty** (vertex detectors!)
 - Indication for $R_{AA}^{\text{beauty}} > R_{AA}^{\text{charm}}$
 - $R_{AA}^{\text{beauty}} > R_{AA}^{\text{light}}$ at low p_T, effect vanishing at very high p_T
 - R_{AA}^{charm} vs. R_{AA}^{light} comparison more delicate
- Indication (3σ) for non-zero charm elliptic flow at low p_T
Quarkonia: from color screening...

Screening of strong interactions in a QGP

- Screening stronger at high T
- $\lambda_D \rightarrow \text{maximum size}$ of a bound state, decreases when T increases
- Different states, different sizes

Resonance melting

QGP thermometer

T. Matsui and H. Satz, PLB178 (1986) 416

A. Adare et al. (PHENIX), arXiv:1404.2246
...to regeneration (for charmonium!)

At sufficiently high energy, the cc pair multiplicity becomes large.

Statistical approach:
- Charmonium fully melted in QGP
- Charmonium produced, together with all other hadrons, at chemical freeze-out, according to statistical weights

Kinetic recombination:
- Continuous dissociation/regeneration over QGP lifetime

Contrary to the color screening scenario this mechanism can lead to a charmonium enhancement

if supported by data, charmonium looses status as “thermometer” of QGP ...and gains status as a powerful observable for the phase boundary

P. Braun-Munzinger and J. Stachel, PLB490 (2000) 196
Low p_T J/ψ: ALICE

- Compare J/ψ suppression, RHIC ($\sqrt{s_{NN}}=0.2$ TeV) vs LHC ($\sqrt{s_{NN}}=2.76$ TeV)
- Results dominated by low-p_T J/ψ
 - Stronger centrality dependence at lower energy
 - Systematically larger R_{AA} values for central events in ALICE

Possible interpretation:

- RHIC energy \rightarrow suppression effects dominate
- LHC energy \rightarrow suppression + regeneration

How can this picture be validated?
Charm-quark transverse momentum spectrum peaked at low-p_T
Recombination processes expect to mainly enhance low-p_T J/ψ
→ Expect smaller suppression for low-p_T J/ψ → observed!

Opposite trend with respect to lower energy experiments
Fair agreement with transport and statistical models (not shown)
Other strong hint for recombination: non-zero v_2 for J/ψ (ALICE+CMS)

CNM effects are not negligible!

- Suppression at backward + central rapidity
- No suppression (enhancement?) at forward rapidity
- Fair agreement with models (shadowing + energy loss)
- (Rough) extrapolation of CNM effects to Pb-Pb → evidence for hot matter effects!

R. Aaij et al. (LHCb), JHEP 02(2014) 072
B. Abelev et al. (ALICE), JHEP 02(2014) 073
CNM effects are not negligible!

- Suppression at backward + central rapidity
- No suppression (enhancement?) at forward rapidity
- Fair agreement with models (shadowing + energy loss)
- (Rough) extrapolation of CNM effects to Pb-Pb → evidence for hot matter effects!
Weakly bound charmonia: $\psi(2S)$

ALICE: evidence for **strong suppression** effects in p_T-integrated p-Pb collisions (compared to J/ψ), increasing with the event activity.

CMS: from **enhancement** to strong suppression moving from intermediate ($p_T > 3$ GeV/c) to large ($p_T > 6.5$ GeV/c) transverse momentum.

How can these observations be reconciled?
Suppression: CMS results

More weakly bound states (Γ(2S), Γ(3S)) show strong suppression in Pb-Pb, compared to Γ(1S)

Expected signature for QGP-related suppression

Regeneration effects expected to be negligible for bottomonia

S. Chatrchyan et al. (CMS), PRL 109 (2012) 222301
More weakly bound states ($\Upsilon(2S)$, $\Upsilon(3S)$) show strong suppression in Pb-Pb, compared to $\Upsilon(1S)$

Expected signature for QGP-related suppression

Regeneration effects expected to be negligible for bottomonia

S. Chatrchyan et al. (CMS), PRL 109 (2012) 222301
First accurate determination of Υ suppression

- Suppression increases with centrality
- First determination of $\Upsilon(2S)$
 - R_{AA}: already suppressed in peripheral collisions
- $\Upsilon(1S)$ (see also ALICE)
 - compatible with suppression of bottomonium states decaying to $\Upsilon(1S)$
 → Probably yes, also taking into account the normalization uncertainty

Is $\Upsilon(1S)$ dissociation threshold still beyond LHC reach? → Run-II

S. Chatrchyan et al. (CMS), PRL 109 (2012) 222301
B. Abelev et al. (ALICE), arXiv:1405.4493
Do not forget CNM...

- In the γ sector, the influence of CNM effects is small

- Hints for suppression of $\gamma(1S)$ at forward rapidity?
- (Small) relative suppression of $\gamma(2S)$ and $\gamma(3S)$ wrt $\gamma(1S)$ at mid-rapidity
- Qualitative agreement with models within uncertainties
- CNM cannot account for all of the effect observed in Pb-Pb

S. Chatrchyan et al. (CMS), JHEP 04(2014) 103
Evolution of relative yields: pp, p-Pb, Pb-Pb

- Strong correlation of charmonia/bottomonia/open charm relative yields as a function of quantities related to the hadronic activity in the event.
- Observation related to the role of MPI in pp also in the hard sector.

S. Chatrchyan et al. (CMS), JHEP 04(2014) 103
Charmonia/bottomonia: short summary

- Two main mechanisms at play
 1) Suppression in a deconfined medium
 2) Re-generation (for charmonium only!) at high \sqrt{s}
 - can qualitatively explain the main features of the results

- In the charmonium sector
 - $R_{AA} \rightarrow$ weak centrality dependence at all y, larger than at RHIC
 - Less suppression at low p_T with respect to high p_T
 - CNM effects non-negligible but cannot explain Pb-Pb observations

- In the bottomonium sector
 - Clear ordering of the suppression of the three Υ states with their binding energy \rightarrow as expected from sequential melting
 - $\Upsilon(1S)$ suppression consistent with excited state suppression (50% feed-down)
Conclusions

- Complete set of results from run-I is now available
- Confirm the role of heavy quarks/quarkonia as privileged probes for the study of Quark-Gluon Plasma
 - Open charm/beauty mesons are strongly affected by the medium
 - Energy loss pattern, including mass-related effects, in agreement with calculations
 - Significant v_2 confirms the presence of collective effects (low p_T) as well as path-length dependence of energy loss (high p_T)
 - Charmonia/bottomonia are suppressed in the QGP according to their binding energy
 - Charmonium results show clear effects of re-generation during the QGP-phase and/or at phase boundary
- Many (most) of the heavy-quark/quarkonia related observables would benefit from more data to sharpen the conclusions
 - Run-II at $\sqrt{s_{NN}} \sim 5.1$ TeV, 2015-2017
 - Experiment upgrades, 2018 onwards
Backup
First $B \rightarrow e$ measurement in Pb-Pb

- Analysis based on the study of the electron impact parameter distribution

- Indicates $R_{AA} < 1$ for $p_T > 3$ GeV/c

- $R_{pPb} (b \rightarrow e)$ compatible with unity: b-quark affected by the interaction with the hot medium
Non-zero v_2 for J/ψ at the LHC

- The contribution of J/ψ from (re)combination should lead to a significant elliptic flow signal at LHC energy.

- A significant v_2 signal is observed by BOTH ALICE and CMS.

- The signal remains visible even in the region where the contribution of (re)generation should be negligible.

- Due to path length dependence of energy loss?

- In contrast to these observations STAR measures $v_2=0$.

E. Abbas et al. (ALICE), PRL111(2013) 162301
Charm(ed) and strange: $D_S R_{AA}$

- First measurement of D_s^+ in AA collisions
- Expectation: enhancement of the strange/non-strange D meson yield at intermediate p_T if charm hadronizes via recombination in the medium

Strong D_s^+ suppression (similar as D^0, D^+ and D^{*+}) for $8 < p_T < 12$ GeV/c

- More statistics needed to conclude about the low-p_T region
Charm(ed) and strange: $D_S R_{AA}$

- First measurement of D_s^+ in AA collisions
- Expectation: enhancement of the strange/non-strange D meson yield at intermediate p_T if charm hadronizes via recombination in the medium

- Strong D_s^+ suppression (similar as D^0, D^+ and D^{**}) for $8 < p_T < 12$ GeV/c
- More statistics needed to conclude about the low-p_T region
\(\Upsilon(1S) \) vs \(y \) and \(p_T \) from CMS+ALICE

- Start to investigate the **kinematic dependence** of the suppression
- Suppression concentrated at **low** \(p_T \)
 - (opposite than for \(J/\psi \), no recombination here!)
- Suppression extends to **large rapidity** (puzzling \(y \)-dependence?)
Results available up to $p_T=18$ GeV/c for central events (EMCAL)

Clear suppression for central collisions in the studied p_T range

Stronger suppression for central collisions (hint)

R_{pPb} compatible with unity within uncertainties

→ Pb-Pb suppression due to final state effects

No separation D vs B (possible, based on electron impact parameter, but with rather large uncertainties)