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Dimensional transition in Darcy-Rayleigh-Taylor mixing
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When a fluid is confined in a thin layer, it undergoes a dramatic change in its dynamical
and/or statistical properties, which occurs when the confining scale is of the order of
some characteristic scale of the flow. Here we study this dimensional transition in the
framework of Rayleigh-Taylor mixing in porous media. By means of extensive direct
numerical simulations of the Darcy-Rayleigh-Taylor model, we demonstrate the existence
of a transition from three-dimensional (3D) to 2D phenomenology when the horizontal
width of the convective structures becomes larger than the confining scale. At variance
with the case of turbulent flows, in which the transition is continuous and a coexistence of
the 2D and 3D regimes is observed, the transition in porous media is sharp. We investigate
the effects of the transition on the evolution of the mixing process and on the fluctuations of
the density field. In the 2D regime, we observe a speedup in the growth rate of the mixing
layer with an increase of the inhomogeneities of the density field.
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I. INTRODUCTION

The Darcy-Rayleigh-Taylor (DRT) flow is a prototype of convective mixing in porous media. In
analogy with the classical Rayleigh-Taylor (RT) setup, when a layer of heavier fluid is placed on
top of a layer of fluid with lower density in presence of a relative acceleration, the interface between
the two layers becomes unstable [1]. The evolution of the interface leads to the development of a
mixing layer between the two fluids.

When this process occurs in the bulk of a porous medium, the dynamics of the buoyancy-driven
flow is properly described by the Darcy’s law, instead of the Navier-Stokes equations. As a
consequence, the properties of convective mixing in porous media are different from those of the
turbulent convective mixing observed in the classical RT case. While the latter has been extensively
investigated since the last century (see Refs. [2,3] for recent reviews), convective mixing in porous
media is less studied. Gravity driven flow in porous media are important in many applications, in
particular in CO2 sequestration in saline aquifers [4–7], and this motivated recent numerical and
experimental studies of the DRT instability. Most of these studies have been performed in 2D)
[8–11] and a few in 3D [12,13].

The dimensionality of the flow plays a crucial role in its dynamics and statistical properties and
the transition between 3D and 2D regimes in turbulent flows has been object of extensive studies
in the past decade (see Ref. [14] for a recent review). In the case of turbulent flows sustained
by an external forcing, the transition occurs when the confined dimension of the layer becomes
smaller than the forcing correlation scale [15–17]. This transition is smooth and for intermediate
confinement one observes the coexistence of a direct and an inverse energy cascade. In the case
of RT turbulence, the transition occurs dynamically when the width of the turbulent mixing region
becomes larger than the confined dimension of the fluid layer [18]. In this case the transition changes
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not only the direction but also the statistics of the cascade, from Kolmogorov-Obukhov scaling in
3D [19] to Bolgiano-Obukhov scaling in 2D [20,21]. Also in this case it is possible to observe
both scaling laws at intermediate confinement [18]. In the DRT case the dimensionality changes
quantitatively the evolution of the mixing layer. In particular, it has been observed a faster growth of
the mixing layer in 2D simulations with respect to 3D simulations at the same Péclet number [13].

In this work we investigate the nature of the dimensional transition in mixing convection in a
porous medium confined in a vertical layer. To this aim, we numerically study the Darcy-Rayleigh-
Taylor flow in a domain in which the vertical size Lz is much larger than the horizontal sizes Lx

and Ly and the latter (the confined direction) varies in the range 0 < Ly � Lx. By extensive direct
numerical simulation of the DRT model, we find that the evolution of the system with different Ly

can be grouped in two classes characterized by either 2D or 3D dynamics with a sharp transition.
The discriminant between the two classes is whether the scale Ly is smaller or larger than the typical
horizontal scale of the convective structures which develop in the mixing layer.

II. DARCY-RAYLEIGH-TAYLOR SYSTEM

We consider the Darcy’s equation to describe the motion of a single-phase fluid in a porous
media [22]. In the Boussinesq approximation [23] the equations for the density field ρ and the
incompressible velocity field u are as follows:

∂tρ + u · ∇ρ = D∇2ρ, (1)

u = κ

μφ
(−∇p + ρg), ∇ · u = 0, (2)

where g = (0, 0,−g) is the gravitational acceleration, D is the diffusivity coefficient, φ is the
porosity of the medium and κ is the isotropic permeability. The viscosity μ is assumed to be
constant. The pressure p is given by the Poisson equation ∇2 p = ρgκ/(μφ) and the Darcy flow
rate is q = φu.

By imposing an initial unstable step density profile ρ = ρ0 + sgn(z)�ρ/2 in the vertical di-
rection, where �ρ is the density jump at the interface in z = 0, we obtain a Rayleigh-Taylor
configuration with Atwood number A = �ρ/2ρ0 (as in Ref. [13]). The value of the mean density
ρ0 does not affect the dynamics since the term ρ0g in Eq. (2) can be absorbed in the hydrostatic
pressure. Therefore, in the following, we set ρ0 = 0 without loss of generality. The density jump
defines the characteristic velocity of the system w0 = kg

μφ
�ρ which enters in the dimensionless

Péclet number Pe = Lxw0/D. We remark that the model (1-2) is incompressible by definition,
independently on the value of A, and this limits the physical applicability of the DRT model to
small Atwood number. Moreover, the Darcy equation (2) is valid for a Reynolds number based on
the pore diameter d smaller than unit [24]. Since the permeability is proportional to d2, Using w0 as
the typical velocity one can write Re � d3gA/(ν2�) < 1 which gives a condition for the maximum
pore size.

In order to investigate the transition from the 2D to the 3D regime, we consider the Darcy-
Rayleigh-Taylor flow in a domain of size Lx, Ly, Lz with Lz � Lx � Ly at varying transverse
dimension Ly. Linear stability analysis shows that the most unstable mode in DRT system has a
wavelength LD = 4π√

5−2
D
w0

[8,25,26]. When the transverse scale Ly is smaller than LD, instabilities
cannot develop in the y direction and the dynamics is expected to be two dimensional. Three-
dimensional flow can only develop when Ly � LD. We therefore introduce the dimensionless
confinement number R ≡ Ly/LD which we will use to parametrize the transition from 2D to 3D
regime. We notice that also the Péclet number can be interpreted as a confining number in the x
direction because it can be rewritten as Pe = Lxw0/D = Lx

LD

4π√
5−2

. Therefore it is not expected to
influence the dimensional transition, provided that it is sufficiently large (Pe � 1).
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TABLE I. Summary of the geometry of the simulations. Ny is number of grid points in the y direction,
R = Ly/LD, and M is the number of realization per each width Ly.

Ny 1 2 4 8 16 24 32 64 128 256 512 2048

Ly π/1024 π/512 π/256 π/128 π/64 3π/128 π/32 π/16 π/8 π/4 π/2 2π

R 0.29 0.58 1.15 2.31 4.61 6.92 9.22 18.4 36.9 73.8 148 590
M 10 15 15 20 15 15 10 10 5 3 1 1

III. NUMERICAL SIMULATIONS

We performed a large series of numerical simulations of the Darcy-Boussinesq equations (1)
and (2) in a triply periodic domain with size Lx = 2π , 0 < Ly � Lx, and Lz = 4Lx, at fixed Péclet
number Pe = π × 104. The equations are discretized on a uniform grid at resolution Nx = 2048,
Ny = Nx(Ly/Lx ), and Nz = 4Nx. The corresponding values of the confinement R are reported in
Table I and vary from R = 0.29 (which correspond to a 2D simulation with Ny = 1) up to R = 590
(fully 3D case with Ly = Lx).

At initial time t = 0 the density field is set to ρ(x, y, z, t = 0) = sgn(z)�ρ/2 for −Lz/2 < z <

Lz/2. In our simulations the mean density is set to 〈ρ〉 = 0 (as discussed in Sec. II), and the density
jump is �ρ = 1. A small, random perturbation is added at time t = 0 at the interface at z = 0 to
trigger the instability. In order to improve the statistical accuracy, the results for each dimension Ly

have been averaged over a set of M simulations with independent realizations of the initial random
perturbation (see Table I).

The simulations are performed by means of a fully parallel pseudospectral code, with 2/3
dealiasing and second-order Runge-Kutta time scheme with explicit integration of the diffusive term
in (1). A zero-velocity mask is imposed at the stable density jump at z = ±Lz/2. Further details of
the numerical code and of its validation are reported in Ref. [13].

For the discussion of the results in the next section we will use three different spatial averages:
the 3D average over the whole volume 〈· · · 〉 ≡ (1/LxLyLz )

∫∫∫ · · · dx dy dz, the 2D average over
the xy plane 〈· · · 〉xy ≡ (1/LxLy)

∫∫ · · · dx dy, and the 1D average over the x direction 〈· · · 〉x ≡
(1/Lx )

∫ · · · dx (and similarly for y). The average over the M realizations is implied for all the
results presented (excluding the plots in Figs. 1 and 5).

IV. RESULTS

The effects of the confinement in the y direction of the Darcy-Rayleigh-Taylor flow are clearly
visible by comparing the density field obtained in the simulations with different confinement number
R. In Fig. 1 we show the sections of the density field in the xz plane for R = 0.58 (Ny = 2), R =
4.61 (Ny = 16), and R = 36.9 (Ny = 128) (from left to right) at the same time t = 4.9τ (we use
τ = Lx/w0 to make time dimensionless). In all the cases, we observe the development of a mixing
layer characterized by thin, elongated structures (“fingers”) which penetrate symmetrically into the
upper and bottom reservoirs. The length and width of the fingers are influenced by the confinement:
The height of the mixing layer is reduced at increasing R, while the horizontal scale of the fingers
displays a nonmonotonic dependence on R, with a maximum at intermediate R.

The dependence on R of the extension of the mixing layer is confirmed by the inspection of
the mean density profiles ρ(z, t ). They are computed by averaging the density field over the x and
y directions ρ(z, t ) = 〈ρ(x, y, z, t )〉xy with a further average over the M realizations. As shown in
Fig. 2(a), at fixed time the profiles can be divided in two clusters: below a certain transverse scale Ly

(corresponding to R � 5) the profiles are indistinguishable from the 2D one (Ny = 1) while above
that scale they almost coincide with that of the full 3D case (R = 590). At fixed time, the extension
of the profiles belonging to the 2D-like cluster is larger than that of the 3D one.
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FIG. 1. Sections of the density field in the xz plane at time t = 4.9τ for the simulations at R = 0.58 (left),
R = 4.61 (middle), and R = 36.9 (right). The colors scale ranges from the density values ρ = −�ρ/2 (black)
to ρ = +�ρ/2 (white).
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FIG. 2. (a) Mean density profiles ρ(z, t ) at time t = 3.5τ . (b) Temporal evolution of the width h(t ) of
the mixing layer. Inset: Slope α, obtained from a fit of h(t ) with αw0t at late times, as a function of R.
Different colors and symbols represent simulations at different Ny: Blue solid line with filled circles is the
two-dimensional case Ny = 1 while black solid line with filled square is the three-dimensional case Ny = 2048;
circles stay for Ny = 2 (violet), Ny = 4 (green), Ny = 8 (light blue); full triangles stay for Ny = 16 (orange); full
diamonds for Ny = 24 (yellow); squares stay for Ny = 32 (blue), Ny = 64 (red), Ny = 128 (violet), Ny = 256
(green), and Ny = 512 (light blue).

074501-4



DIMENSIONAL TRANSITION IN …

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  1  2  3  4  5

(a)

v z
/w

0

t/�

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.1  1  10  100  1000
v z

/w
0

R

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  10  20  30  40  50

t T
/�

R2

 0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4  5

(b)

� x
/L

D

t/�

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

 0  1  2  3  4  5

� x
/(

D
t)

1/
2

t/�

FIG. 3. (a) Time evolution of the rms vertical velocity vz at different values of R. Inset (b): rms vertical
velocity vz at t = 5τ versus Ly as a function of R. Inset (a): Transition time tT , computed from the vertical
velocity as the time at which vz(tT ) = 0.25w0, as a function of R2. (b) Time evolution of the horizontal
correlation scale λx (t ) at different values of R. Inset (b): λx (t ) compensated with the diffusive scaling (Dt )1/2.
Colors and symbols are the same of Fig. 2.

From Fig. 2 we define the width of the mixing layer as h(t ) = z+ − z−, where z± are the
heights at which ρ(z±, t ) = ±0.45�ρ. Alternatives definitions of h(t ) (see, e.g., Refs. [27–29])
gives qualitatively similar results. The temporal evolution of h(t ) is shown in Fig. 2(b). In all cases,
long-time growth of the mixing layer is compatible with a linear law h(t ) = αw0t (consequence
of an asymptotic constant velocity proportional to w0 [30]) but with different coefficient α. For
simulations with R � 10 we have α � 0.45, while for small R � 5 we have a faster growth with
α � 0.7, which coincides with that of the 2D case. We remark that the values of α reported here are
slightly different than those measured in Ref. [13] because of the different definition of h(t ). The
cases at intermediate confinement number R � 6 display a transition from the 3D to the 2D regime
during the evolution of the dynamics: At the beginning they lie on the 3D curve, while at later time
they get closer to the 2D slope.

The fastest growth of mixing layer in the quasi-two-dimensional cases is accompanied by an
increase of the rms vertical velocity within the mixing layer. In Fig. 3(a) we show the temporal
evolution of vz(t ) = (〈u2

z (x, y, z = 0, t )〉xy)1/2, computed in the middle of the mixing layer at z = 0.
Also in this case, the curves vz(t ) are clearly divided in two classes. In the 2D-like simulations
with smaller Ly, after an initial transient the vertical velocity reaches an asymptotically constant
value which is higher than the the corresponding value of the 3D-like simulations with larger Ly.
The transition between the two classes is visualized by plotting the values of vz(t ) at the final time
t = 5τ as a function of the confinement number R [see inset of Fig. 3(a)]. Also in this case, close
to R � 6, the velocity drops down from the higher 2D plateau to the lower 3D plateau with a ratio
between the two values compatible to the one observed for α. From Fig. 3(a), we also note that in
the two intermediate simulations with Ny = 16 and Ny = 24 a dimensional transition occurs during
the evolution of the system. The value of vz(t ) initially lies on the 3D curve, then it grows and it
reaches the 2D curve. The time at which the transition occurs is longer for the simulations with the
larger R.

We argue that the transition from the 3D to the 2D regimes occurs when the transverse scale Ly

is of the order of the typical horizontal width of the fingers. At the beginning of the evolution, the
width of the fingers is of the order of LD, that is the wavelength of the most unstable perturbation
of the initial interface (see Sec. II). If the transverse scale Ly is smaller than or comparable with LD,
then the linear instabilities cannot develop in the y direction and the evolution of the system remains
two-dimensional. Conversely, if Ly is much larger than LD, then the 3D dynamics can develop.

074501-5



M. BORGNINO G. BOFFETTA AND S. MUSACCHIO

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5

(a)

σ
2 /(
Δρ

/2
)2

t/τ

 0.1
 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 0.1  1  10  100  1000

σ
2 /(
Δρ

/2
)2

R
 0

103

2x103

3x103

4x103

5x103

6x103

7x103

 0 2x104 4x104 6x104 8x104

(b)

N
u

Ra

3x103

4x103

5x103

6x103

7x103

 0.1  1  10  100  1000

N
u

R

FIG. 4. (a) Time evolution of density variance σ 2 = 〈〈ρ2〉xy − ρ2〉z, made dimensionless with its maximum
theoretical value, at different R. Inset (a): The final value of σ 2 plotted as a function of R. (b) Nusselt number
as a function of the Rayleigh number for the simulations at different values of R. Inset (b): The final value of
Nu plotted as a function of R. Colors and symbols are the same of Fig. 2. Error bars represent the standard
deviation over the different realizations.

This idea is indeed supported by the results shown in the insets of Fig. 2 and Fig. 3 which show a
transition for R � 6.

The width of fingers is expected to grow in time, because of the interplay between the processes
of diffusion, merging and splitting. As a consequence, when the transverse scale Ly is larger than the
initial width of the fingers, the system initially follows the 3D dynamics, and then it displays a transi-
tion to the 2D regime when the coarsening of the fingers reaches the scale Ly. In order to investigate
how the width of fingers grows in time, we measure their correlation scale λx defined in terms of the
autocorrelation function of the density fluctuations c(r, t ) = 〈ρ(x + r, t )ρ(x, t )〉xy/〈ρ2(x, t )〉xy as
the scale at which c(λx, t ) = 1/2 (on the plane z = 0). The time evolution of λx is shown in Fig. 3(b).
At variance with the previous results, here we cannot clearly identify two different clusters of curves
belonging to the 2D and 3D regimes, nonetheless we observe a monotonic growth of the correlation
scale for all the simulations. In two extreme cases with Ny = 1 and Ny = 2048, which corresponds
to the fully 2D and 3D simulations respectively, we identify a clear diffusive scaling λx � (Dt )1/2

[see inset of Fig. 3(b)] in agreement with previous findings [13]. In the intermediate cases we
observe some deviations from the t1/2 growth, but it is unclear if these deviations are transient
or if they persist at longer times. Assuming that the growth of the size of fingers is responsible for
the transition from 3D to 2D regimes at intermediate R, and that it follows a diffusive scaling, we
obtain a simple scaling prediction for the transition time as tT ∝ R2. This is indeed compatible with
the few points R for which we observe a dynamical transition, as shown in the inset of Fig. 3(a).

It is also interesting to investigate if and how the confinement affects the mixing of the
density field inside the mixing layer. To this aim we compute the density variance σ 2(t ) ≡
〈〈ρ2(x, y, z, t )〉xy − ρ2(z, t )〉z averaged over the mixing layer. For a fully mixed density field (as
in the case of diffusive mixing), ρ is constant over horizontal planes, i.e., ρ(x, y, z) = ρ(z) and
therefore σ 2 = 0. On the contrary, if the density field is completely unmixed (and therefore assumes
values ±�ρ/2 only), then the variance attains the maximum value σ 2 = �ρ2/4.

Figure 4(a) shows the time evolution of the variance for the simulations at different confinement
R. Similarly to Fig. 3(a), also in this case 3D-like and 2D-like simulations reach different values
(with some spreading of the results for the 2D-like cases). At late times, density variance reaches
smaller values for the 3D simulations, indicating a better mixing with respect to the more confined
simulations which have larger values as a consequence of more coherent plumes of unmixed fluid
inside the mixing layer. We note that the final values of σ 2 (computed at the last time of the
simulations) display a nonmonotonic behavior as a function of R [see inset of Fig. 4(a)] They show a
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FIG. 5. Horizontal sections of the density field at z = 0 and t = 3.5τ . The four cases correspond to the
simulations with R = 4.61 (Ny = 16), R = 6.92 (Ny = 24), R = 9.22 (Ny = 32), and R = 148 (Ny = 512) from
top to bottom (in the plot x is along the horizontal and y along the vertical). For visualization clarity, since
Lx � Ly, we plot only half of the section in the x direction, i.e., the region 0 � x � Lx/2. The color scale
ranges from the density values ρ = −�ρ/2 (black) to ρ = +�ρ/2 (white).

slight increase above the 2D value, before dropping down to the 3D value. We do not have a simple
phenomenological explanation of this complex transitional behavior.

The dimensionality of the system influences also the correlations between the density fluctuations
and vertical velocity field within the mixing layer. This effect can be quantified in terms of the mass-
transfer Nusselt number Nu = 〈uzρ〉h

D�ρ
, which is proportional to the correlation between the fields uz

and ρ. Plotting the Nusselt number versus the Rayleigh number Ra = w0h
D allows to compare the

correlation between the fields uz and ρ in different simulations at fixed extension h of the mixing
layer. The results in Fig. 4(b) show that the values of Nu at given Ra are always larger in the
simulations belonging to the 2D class. The values of Nu at final time, shown in the inset of Fig. 4(b),
have a nonmonotonic behavior as a function of R (similarly to what observed for σ 2). The higher
values of Nu are observed for the transition case Ny = 16 [see inset of Fig. 4(b)] which has also
the largest vertical velocity (see Fig. 3). We remark that, since in Fig. 4(b) the Nusselt numbers
are plotted at fixed Rayleigh number, their dependence on R is not affected by the faster growth of
the mixing layer in the 2D case, but only on the increased correlation between the vertical velocity
and density fluctuations. This stronger correlation is also responsible for the larger values of density
variance in the 2D simulations.

The bidimensionalization of the dynamics is clearly visible in the horizontal sections of the
density field. The four sections shown in Fig. 5 are taken at the midplane z = 0, at time t = 3.5τ , for
the cases with Ny = 16, 24, 32, 512. Although we seed all the simulation with a three-dimensional
initial perturbation at the interface, the systems with smaller Ly lose completely the y dependence as
they evolve and then follow a 2D dynamics. Conversely, in the cases with large Ly the density field
displays 3D structures and the 3D dynamics lasts for longer. In the case Ny = 24, at this time which
correspond to the transition (see Fig. 3) we observe a coexistence of regions which are already 2D
and others in which 3D structures still persist. These structures are squeezed in the thin layer, and
therefore they assume an elongated shape in the x direction. The squeezing of the fingers causes the
increase of the correlation length λx, which is observed in the cases Ny = 16, 24 as shown in Fig. 4.

A quantitative measure of the bidimensionalization of the system is provided by the 2D index:

χ (t ) =
〈 〈ρ(x, y, z = 0, t )〉2

y

〈ρ2(x, y, z = 0, t )〉y

〉
x

, (3)

which varies in the range [0, 1]. In case of 3D homogeneous dynamics, the average of the density
fluctuations in the y direction at fixed x and z = 0 vanishes, and therefore χ = 0. Conversely,
if the density field is independent on the y coordinate, then the averages 〈ρ(x, y, z = 0, t )〉2

y and
〈ρ2(x, y, z = 0, t )〉y are equal, and hence χ = 1. The temporal evolution of χ (t ) is shown in Fig. 6.
In the cases with the smaller Ly (Ny = 2, 4) the value of the index is χ (t ) = 1 at all times, because
the system does not develop 3D instabilities and the dynamics remains fully 2D. Increasing Ly,
the initial value of χ (t ) decreases, signaling the presence of 3D structures in the density field in
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FIG. 6. Time evolution of the two-dimensional index χ for different values of Ny (see labels). Colors and
symbols are the same of Fig. 2.

the early stage of the evolution. When the horizontal scale of these structures grows and becomes
larger than Ly, the system recovers the 2D dynamics and the index approaches (slowly) the 2D
value χ (t ) = 1. Increasing Ly, the bidimensionalizion is achieved at longer times. For the cases
with larger Ly (Ny > 24 in our set of simulations) the value of the index remains χ (t ) < 1 for all
times, indicating that the complete bidimensionalization is never achieved. We remark that we can
expect χ = 0 only when the number of points Ny in the y directions is large enough to give a zero
average in the numerator of (3).

V. CONCLUSIONS

We have studied the effects of the dimensionality on mixing processes in the Darcy-Rayleigh-
Taylor system by means of extensive direct numerical simulations in a periodic domain with variable
horizontal width.

Our results confirm that the growth of the mixing layer is faster for thin fluid layers, in agreement
with previous findings [13]. The dimensionality of the system influences also the properties of the
convective structures (“fingers”) within the mixing layers. In the 2D cases, the density field inside
the fingers is less mixed and it is more correlated with the vertical velocity that in 3D.

The transition from the 3D to the 2D regimes is observed when the typical width of the fingers,
which is quantified in terms of the horizontal correlation scale λx, becomes larger than the confining
scale Ly. Interestingly, the horizontal scale λx grows in time because of the intricate processes of
merging and diffusive coarsening of fingers. Given that the process of coarsening (which follows
a diffusive law) is very slow compared to the evolution of the mixing layer (which grows linearly
in time), in most cases it is possible to classify the evolution of the DRT system in two classes,
which follows either the ideal 2D or the 3D dynamics. Nevertheless, for the intermediate cases in
which the width Ly of the layer is close to the initial width of the fingers, we observe a dimensional
transition from an initial 3D regime to the 2D regime at late times, caused by the coarsening of the
fingers.

In the ideal case of a domain with infinite vertical extension, the coarsening of the fingers could,
in principle, continue until they reach the horizontal confining scale, even if the latter is very large.
This would eventually lead to a dimensional transition for arbitrary large R. Anyway, this would
require a very long time, because the coarsening is slow. In real cases, in which the domain is finite,
the transition can be observed only in a narrow range of R.
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If the horizontal scales are comparable (Lx � Ly), then the transition leads to a 1D regime. The
1D regime has been investigated in the turbulent RT case [31], in which a subdiffusive growth of
the mixing layer h(t ) ∼ t2/5 is observed.

We note that our results have been obtained with periodic boundary conditions (BC) also in the
confined direction. When the flow is confined in 2D (or quasi-2D) geometries by rigid boundaries,
the dynamics is influenced by the absence of wall-normal flow and the friction with the side walls,
which dissipates part of the kinetic energy. Nonetheless, in the case of turbulent flows, it has been
shown that the presence of boundaries in experimental studies with thin fluid layers does not change
qualitatively the results of the simulations with periodic BC (in particular the coexistence of a direct
and inverse cascade). In the case of porous media, the Darcy flow is dominated by the friction with
the medium everywhere, therefore the effects of the fiction with side walls is expected to be very
small, if any. The role of no-penetration BC on the dimensional transition is less clear. The absence
of normal flow across the boundaries could hinder the development of the 3D structures in the case
in which the confining direction is of the same order of the horizontal size of the fingers. This effect
could shift the dimensional transition to slightly larger values of the confinement number R with
respect to those observed in our simulations with periodic BC. A comparison of our results with
numerical and/or experimental studies in the presence of no-normal-flow boundaries could help to
clarify this issue.
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