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Relaxation of finite perturbations: Beyond the fluctuation-response relation
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We study the response of dynamical systems to finite amplitude perturbation. A generalized
fluctuation-response relation is derived, which links the average relaxation toward equilibrium to the
invariant measure of the system and points out the relevance of the amplitude of the initial
perturbation. Numerical computations on systems with many characteristic times show the
relevance of the above-mentioned relation in realistic case20@8 American Institute of Physics.
[DOI: 10.1063/1.1579643

Understanding the behavior of a dynamical system out of mate system from a perturbatiGresponsgcan be estimated
its equilibrium is a crucial issue of statistical physics. In  from its time history(correlation times of the unperturbed
the case of an infinitesimal perturbation that shifts the  system.

system out of equilibrium, the classical fluctuation- Assuming that the system is mixing and has invariant
response theorem allows one to determine the linear re- probability density functioripdf) p(x), it is possible to derive
sponse of the system in terms of its equilibrium proper- the following F/R relation. Let us denote b(t)

ties, i.e., correlation functions. While the behavior of =(x(t),... Xy(t)) the state of the system at tinhelf at the
infinitesimal perturbations gives relevant information for initial time t=0 the system is perturbed byx(0)
problems of statistical mechanics, for climate and geo- =(6x1(0),...,0x\(0)), theaverage evolution of the pertur-

physical models the main goal is to characterize the re- bation(éx;(t)) with respect the unperturbed trajectory is
laxation of large perturbations, which cannot be obtained
from the linear response theorem. We present here a gen- _

o . . - oxi(1))= R, (1) 6%;(0), 1
eralization of the fluctuation-response relation, which (% (V) Z 1i(0%(0) @
holds for finite amplitude perturbations, providing a tool

for extracting nonequilibrium behavior out of equilib- where

rium features of the system. We also discuss the non- s (1)

trivial role of the amplitude of perturbations in systems iy W\ e

where many characteristic time scales are present. Rij(D 6x;(0) (i(DT;(x(0))) 2

and the functiorf; depends om(x) as
I. INTRODUCTION
aln p(x)

f==—5

()

The fluctuation-respons@=/R) relation has a deep rel-
evance in statistical physics and more generally in systems
with chaotic dynamics(in particular in hydrodynamics In Sec. Il we will give a complete derivation of the above-
The relevance of a connection between “nonequilibrium” mentioned formulas.
features (i.e., response to an external perturbaficand As far as we know, the F/R problem had been studied
“equilibrium” properties (i.e., time correlations computed only for infinitesimal perturbations. For statistical mechanics
according to the invariant measiiis well known in statis- problems it is relevant to deal with infinitesimal perturba-
tical mechanics. We can mention the important Green—Kubdions on the microscopic variables. In a similar way this
formulas in the linear response thedrgeyond statistical problem has importance in many analytical approaches to the
physics, another field where the F/R problem has obvioustatistical description of hydrodynamics where Green func-
relevance is climate researttOne of the key problems is tions are naturally involved both in perturbative theory and
the possibility to understand the response of the present clilosure scheme's?
mate to some violent changésg., a volcanic eruptionThe On the other hand in geophysical or climate problems
essential point is the possibility that the recovery of the cli-the interest in infinitesimal perturbation seems to be rather

]
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academic, while the interesting problem is the behavior of For an infinitesimal perturbation  6x(0)
relaxation of large fluctuations in the system due to fast=(6x4(0)---6x\(0)) expanding Eq.(8) to first order one
changes of the parameters. ends with the expression

In this paper we want to address the problem of the F/R

. P . . aln p( )
relation for noninfinitesimal perturbations. In Sec. Il we will (Sx(t))y= > x(t) ——— 8%;(0)
show that it is possible to generalize the F/R relation to large i Xj =0

perturbations, involving rare events of the invariant measure.
Section Il is devoted to a discussion on the connections, and EE R j(1)8%;(0), (9
differences, between our approach and well-known results in j
dynamical system theory. In Sec. IV we will discuss the ap-hich defines the linear response
plication to systems involving a single characteristic time,
> (10)
t=0

while Sec. V is devoted to systems with many characteristic (1 _ [ (1) 2P din P(X)

times. Section VI is devoted to conclusions and the Appendix h Xj
of the variablex; with respect to a perturbation af . Rela-
tion (10) is the generalization for non-Hamiltonian systems

contains some technical remarks.
of the well-known fluctuation/responsE/R) relation?
Let us note that in the general case the invariant measure
In the following we will consider a dynamical system p(X) is not known, so Eq(10) gives just qualitative informa-
with evolution X(t) = ¢tx(0) of the N-dimensional vectoxk. tion. In the case of Gaussian d|Str|bUt|qmX) factorizes and
For generality, we will explicitly consider the case in which the linear response recovers the correlator

Il. THEORETICAL BACKGROUND

the time evolution can also be not completely deterministic (Xi()%;(0)) = (x;){X;)

(e.g., stochastic differential equationsVe will assume the R ()= (%) — (X)) (12
existence of an invariant probability distributip(x) and the !

ergodicity of the system so that In the case of finite perturbations, the F/R relati@his

1 (T typically nonlinear in the perturbatiodx, and thus no
(Ay= lim _J A(X(t))dt:M(A)EJ’ A(X)p(x)dx (4)  simple relations analogous to H30) exist. Nevertheless we

TJo can disentangle the different contributions in the respg¢nse
by studying an initial perturbation whose only nonzero com-
gonent is thgth one,

T

for any (smooth enoughobservableA.

Our aim is the understanding of the mean respons
(SA(t)) of a generic observabld initially perturbed with 80x(0)=(0.,...,06x;(0),0....,0. (12)
SA(0). Thefirst step is the study of one componenixof.e.,
(8%;(t)) with an initial (nonrandom perturbation 5x(0)
= 6Xp. Introducing the probability of transition fronxg,0)
to (x,t), W(Xo,0—x,t) [for a deterministic system we have R j(H)=(xi(t)f;(0)), (13
W(Xg,0—X,t) = 8(x(t) — ¢'Xo)], we can easily write an ex- wheref, is given by
pression for the mean value of the variable computed along

We therefore generalize the F/R relatiét0O) to nonlinear
response ok; to a perturbation on the variable as

the perturbed trajectony, (t)=x;(t) + x;(t): o P(Xo— 59x(0)) — p(%o)
)= o, (0) (19
(x (t)>:J JXip'(XO)W(XO'O_’X't)dXdXO' (5) The explicit prediction of the response from E(.3)

requires the analytic expression of the invariant pdf, which is
in general not known. Nevertheless H{) guarantees the
existence of a link between equilibrium properties of the sys-
tem and the response to finite perturbations. This fact has a
relevant consequence for systems with one single character-

where p’(x) is the initial distribution of perturbed system,
which is related to the invariant distribution by’ (Xg)
=p(Xg— 6%p). Noting that the mean value o§(t) can be
written in a similar way;

istic time: a generic correlatiore.g., the correlatio11)] in
<Xi(t)>:J JXip(XO)W(XO’O_)X’t)dXdXO’ ®  principle gives information on the relaxation time of finite
one has size perturbations, even when the invariant meagusenot
known?
Xo— OX X
(8x(1)= J f P f)) P2 0
0 Ill. REMARKS ON THE CONNECTIONS BETWEEN F/R
% W(x0,0— X, t)dx dx RELATION, DYNAMICAL SYSTEM THEORY, AND
0 ’ 0 STATISTICAL MECHANICS
=(Xi()F (X0, %)), () Since the F/R relation involves the evolution of differ-
where ences between variables computed on two different realiza-

tions of the system, it is natural to conclude that this issue is
(8) closely related to the predictability problem and, more in
general, to chaotic behavior. Actually, a detailed analysis

F(Xg,6%p) =

[P(Xo_ 0Xo) — p(Xo)
p(Xo)

Downloaded 30 Jun 2003 to 193.175.8.51. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



808 Chaos, Vol. 13, No. 3, 2003 Boffetta et al.

shows that the two problems, i.e., F/R relation and predict-
ability, have only a very weak connection. For the sake of
completeness, we briefly discuss here the analogies and di
ferences between these two issues.

The typical problem for the characterization of predict-
ability is the evolution of the trajectory differene¥(t), in
particular of(In|sx(t)|) which defines the leading Lyapunov
exponent\. For small|8x(0)| and large enough one has

C(t).R()

(In| 8x(t)|)=In| Sx(0)|At. (15)

On the other hand, in F/R issue one deals with averages o

quantities with sign, such asx(t)). This apparently mar-

ginal difference is very important and it is at the basis of theFIG. 1. Correlation function of the variable of Lorenz mode(solid line)

famous obiection bv van Kampen related to the Standaré‘lompared with the mean response to different perturbations of the same
lous obj oy P ANCAG, iable. 67,=10 %0 (dashed ling dzp=c (dotted ling, with o

derivation of the linear response the8y a nutshell, using = B (2=8.67.

the modern dynamical systems terminology, van Kampen'’s

argument is as follows. Since in presence of chabgt)|

grows exponentially in time, it is not possible to linearize Eq.

(8) for time |arger than (N)|n(A/|éX(O)|), whereA is the IV. SYSTEMS WITH A SINGLE CHARACTERISTIC TIME

typical fluctuation of the variable. As a consequence, the Let us start by studving two examoles of svstems with a
linear response theory is expected to be valid only for ex- y ying b y

tremely small and unphysical perturbations, in clear diS_smgle characteristic time: a deterministic chaotic systtra

agreement with the experience. A solution of this apparenk‘Orenz mOde)l anq a nonlinear Lang%\ém Process.

paradox was proposed by Kubo who suggested tiatta- We first consider the Lorenz model

bility [of the trajectories] instead favors the stability of dis- dx

tribution functions, working as the cause of the mixing a:"(y_x)'

More recent works have demonstrated the constructive role

of chaos in F/R relation and the nonrelevance of van y

Kampen's criticisnf® The objection by van Kampen re- qr xETmey. (16

mains nevertheless relevant for numerical computations of

F/R relation(see the Appendjx d_z =xy—bz
Fluctuation/response relation was developed in the con-  dt

text of statistical mechanics of Hamiltonian systems, but i1 standard parameters for chaotic behavior: 8/3, o

also holds for nonconservative systems, and even nondete;—lo, andr =28. The correlation functiofl) for the vari-

ministic systemge.g., Langevin equationsind has no gen-  ap1e, shown in Fig. 1, qualitatively reproduces the behavior

eral relation with “chaotic quantities” such as Lyapunov ex- ot the response to different sizes of the perturbation ofzthe
ponents or Kolmogorov—Sinai entropy. This generated in thg 5 iape, ranging from infinitesimal ones up to the size of the

past some confusion about the applicability of F/R relationgyactor. The accuracy does not increase when decreasing
For example, some authors claimesiith qualitative argu- o perturbation because the invariant distribution is not
ments that in fully developed turbulence there is no relation Gaussian(see Fig. 1 and thus the general correlatighO)

between equilibrium  fluctuations and relaxation 1064 e used. We observe that the use of () instead
equilibriumt® while the correct statement concerns the non-

- L s ) of Eq. (11) is in general much more difficult because the
validity of the simplified relation(12) which holds only for invariant distribution is in general nonfactorable.
systems with Gaussian statistics.

! o To better illustrate this point, let us now consider a sys-
Thanks to its general validity and robustness, the F/Rem \whose invariant probability distribution is known. In this
relation has also been used to obtain information on the Unszq6 we can quantitatively compare the differences between

known invariant measurg(x) on the basis of the linear re- o regponses to infinitesimal and finite perturbations. Our
sponseR; ;(t). An important example comes from the field oy 5 mpie is provided by the stochastic procegs deter-

of disordered systems where the F/R had been applied to the;\oq by

study of aging phenomerta.

Concluding this short discussion on the connections be- dx_ dU(x) 3D
tween F/R relation, dynamical system theory, and statistical dt dx '
mechanics, we mention recent results about rigorous deriva- . . : . . .
. . . iR where £(t) is a white noise, i.e., a Gaussian process with
tion of the Onsager reciprocity relationsand the macro- (£(1))=0 and (£(1)£(t'))=8(t—t'). The invariant prob-
scopic fluctuation theory for stationary nonequilibrium ability distribution i< '
state$® in a class of stochastic models describing interacting™ >
particles systems. p(x)=Ne VXD (18

17)
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time scales, corresponding to the different decay times of the
correlation functionst,j=<xj(t)xj(0)).5 In addition, at

variance with systems with one single time scale, here the
amplitude of the perturbation can play a major role in deter-

mining the response, because different amplitudes may affect
features with different time properties.

The link between equilibrium and relaxation properties
established by the F/R relatidd3) suggests that it is pos-
sible to relate different relaxation rates with the time scales
measured by means of correlations. Consider the case of an
o, observableA which depends on all the variables of the sys-
0.1 : : : : — tem {xq,...,Xy}. For infinitesimal perturbations, a straight-
forward generalization of Eq$1) and(2) gives

FIG. 2. Mean response of the stochastic differential equatict\dt
=—B(x)+ 2D &(t), with D=1, B(x)=x for |x|<1 andB(x)=1 for |x|
>1, to different perturbations: largéx,=2.30 (+) and infinitesimaldx,
=7.6x10"30 (X). In both cases the mean response is exactly predicted by
the correlatorx(t) f(x(0))) (dashed line fordx,=2.30 and dotted line for
Xo=7.6x103) according to Eq.(13) while the simple correlation
(x(t)x(0))/a? (solid line) just gives an estimate of the relaxation time. In
the inset we show the invariant probability distributip(x) o vs x/o with
o= (x5 —(x)?=1.32. Statistics is over £ndependent runs.

(8A()= 2 (AX(1)f;(x(0))) 8%;(0). (20

In the case of finite perturbations, as stressed in Sec. I,
it is possible to write a F/R relation:

(8A(1)=(A(X(1))F(x(0),0%(0))) (21)

in which, at variance with Eq(20), all the variables are
mixed. In Eq.(21) the relaxation properties depend explicitly
on the initial perturbationx(0).
whereNis fixed by normalization. Depending on the choice @f(x), different perturbations
A Gaussian pdf is obtained usind(x)=x?/2, which  on A correspond to different amplitudes of the perturbations
corresponds to the linear Ornstein—Uhlenbeck procesgn each variable;. Consequently, one can think that it is
dx/dt=—x+\2D(t). Our example uses a modified ver- possible to associate each perturbation to a certain subset of
sion of the Gaussian case, variables which are mainly perturbed. The relaxation of
1.2 (5A(t)) will be ruled by the characteristic time of that par-
EX , |X|<1 .
(19) ticular subset. _ o _
Ix|—%, |x|>1. In order to illustrate this issue we consider a shell model
_ , _ , for turbulencet® Shell models are a simplified model for
The resulting pdf, shown in the inset of Fig. 2, has a Gaussgryylent energy cascade, which describe the dynamics of
ian core, with exponential tails. Figure 2 also shows the 'eVelocity fluctuations at a certain scale=k_ * with a single
sponse function for an infinitesimal and for a finite size per-gpai.variable u,. Wave numbersk, arne geometrically
turbation. For both perturbations, the response functior%paced ak,=ko\", allowing one to cover a large range of
measured from the perturbed trajectories is exactly predicted.yjes with relatively few variables. A quadratic interaction
by statistics of the unperturbed system according to(E8),  perween neighbor shell reproduces the main features of

- . - _ 2 -
while the Gaussian correlatioB(t) =(x(t)x(0))/c“ gives  ihree_dimensional turbulence. The specific model we will use
only an estimate of the relaxation time. By construction, theg

pdf of this system has larger tails than in the Gaussian case,
thus large fluctuations decay slower than small ones. In the
linear case the mean response is simR(y) =exp(-t) and
does not depend on the amplitude of the initial perturbation
6x(0).

The results obtained for the Lorenz model and for the
nonlinear Langevin equations suggest that if only one charwherev is the molecular viscosityt, is an external forcing
acteristic time is present, the existence of the F/R relationvhich injects energy at large scale, anis a free parameter.
allows for some qualitative results even in the absence ofn order to have the correct conservation latgsergy and
precise knowledge o, both for infinitesimal and finite per- helicity) in the inviscid unforced case one has to #x
turbation. =1/2. The observable considered is the total endggt)
= 23N |un(t)|? which is the conserved quantity in the in-
viscid, unforced limitt®

In order to study the response to perturbations with dif-
ferent amplitude ork, we consider the following perturbed

In systems with many characteristic times, different cor-systems labeled withi=1,...N: uﬂ)(t) =up(t)+ 6uﬂ)(t)
relation functions do not show the same behavior, i.e., dewhere the initial perturbation&uﬂ)(O) are set in the follow-
pending on the observable one can observe very differenihg way:

d

2 _ * *
at + VK, [Un=i[Kns1Up 4 qUns2— €KpUng1US_q

+(1_E)kn_1un_2un_1]+fn, (22)

V. SYSTEMS WITH MANY CHARACTERISTIC TIMES
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FIG. 3. Mean respons&(t)=(SE(t)/SE(0)) of the total energyE(t) FIG. 4. Halving timesT,, of the mean response to different amplitude
=1/25|u,|? of the shell modek22) to different amplitude perturbations: ~ Perturbations of the total enerd§(t)=1/25|u,|? of the shell model22):
SE(0)=5.5x10"3 (+), SE(0)=1.7x1073 (X), SE(0)=4.5x107* (*). R(t)=(SE(t)/SE(0)). Solid line represents the dimensional scalifig,
Varying the amplitude of the initial perturbation different relaxation rates are~ oE.
observed, and the response function is roughly similar to the correlation
function of the corresponding largest perturbed shell: shell12 (solid
line), shelln=14 (dashed ling shelln=16 (dotted ling.

VI. CONCLUSIONS

Starting from the seminal works of Leitf who pro-
, 0, Isn<i—-1 posed the use of F/R relation for understanding the response
su$)(0)= TulB i=n=N. (23)  of the climatic system to changes in the external forcing,
many authors tried to apply this relation to different geo-
This corresponds to a set of initial perturbations of the enphysical problems, ranging from simplified mod&igo gen-
ergy eral circulation modef§'?°and to the covariance of satellite
radiance spectrd. Most applications have not taken into ac-
13 ) count the limits of applicability of the F/R relation, which
(0E;(0))= §n§=:i (Jun|?). (24 has been used as a kind of approximation. We have shown
that a F/R relation holds under very general conditions. The
Such a perturbation is motivated by the fact that in thederivation in Sec. Il clearly shows the limits of applicability
unperturbed system the energy is distributed among thin its simplest form[i.e., the Gaussian approximati¢hl)].
shells according to the Kolmogorov scalifigi,|?)~k;, %3, Our main result is the demonstration that an exact
and the smaller scales give smaller contributions to the erfluctuation/response relation holds also for noninfinitesimal
ergy E(t). Thus it is natural to assume that a small pertur-perturbation. This relation involves the detailed form of the

bation of the energy will affect mainly the small scales. invariant probability distribution. In particular, in order to
For each perturbatiodE;, the average response of en- predict the mean response to large perturbations, one needs
ergy precise knowledge of the tails of the pdf.

We believe that this generalization of the usual linear
response theory can be relevant in many applications. As an
example, we can mention climate research, where our results
imply the possibility, at least in principle, to understand the
reveals a close relation with the time correlation of the cor,ehavior of the system after a large impulsive perturbation
responding largest perturbed shel(t), as shown in Fig. 3. (¢ g a volcanic eruptionin terms of the knowledge ob-

A measure of the relaxation time can be provided by thgaineq from its time history. Of course one has to take into
halving times Ty, of the mean response, at which 4ccount the strong limitations due to the need to have a good
(OE(Ty))=125E;(0)). The dependence of response giatistics of rare events.

times on the amplitude of the initial perturbation, shown in

Fig. 4, reflects Kolmogorov scaling for characteristic times

T~k 2RP~ui~ s5E,,

(29)

<5Ei(t>>_ SR U (D)2 un(1)[?
SEi(0)/  \ =N, [uP(0)]2—u,(0)?
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1 T - .1 T of a perturbatiorsx(0), one needs sufficient statistics for the
S o ' convergence of(x(0)— 6x(0)). This request is more severe
%10'1 - /_\ in systems where large fluctuations are suppressed. An ex-
2 , ample is provided by the stochastic mod&¥) with
10
= -3 0 3
E)f T x/c
i \*:‘*l;' _ 12, 1.4
=2 U(X)= 3x°+ zX". (A1)
0.1 s . , , - Here the pdf has sub-Gaussian tails, and we observe the op-
"0 0.2 0.4 0.6 0.8 1 posite behavior of the syste(h9), as shown in Fig. 5. While
t in the case with exponential tails we have a good statistical

convergence for a perturbation greater thanr2the second
FIG. 5. Mean response of the stochastic differential equaticthdt 9 P 9

= _B(X)+2D&(t), with D=1, B(x)=x+ X%, to different perturbations: SyStem this perturbation is too large to obtain convergence
finite ox,=1.50 (+) and infinitesimaléx,=1.5x 10 2c (x). The mean  even with huge statistics (10uns.
response is exactly predicted by the correlgw(t) f(x(0))) (dashed line
for 6xo=1.50 and dotted line fodx,=1.5x 10" 2¢") according to Eq(13),
while the simple correlatiogx(t)x(0))/a? (solid line) just gives an esti-
mate of the relaxation time. In the inset we show the invariant probability
distribution p(x) o vs x/a with o= (x?)—(x)?=0.68. Statistics is over
1¢f independent runs. IR. H. Kraichnan, “Classical fluctuation-relaxation theorem,” Phys. Rev.
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