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Relaxation of finite perturbations: Beyond the fluctuation-response relation
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We study the response of dynamical systems to finite amplitude perturbation. A generalized
fluctuation-response relation is derived, which links the average relaxation toward equilibrium to the
invariant measure of the system and points out the relevance of the amplitude of the initial
perturbation. Numerical computations on systems with many characteristic times show the
relevance of the above-mentioned relation in realistic cases. ©2003 American Institute of Physics.
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Understanding the behavior of a dynamical system out of
its equilibrium is a crucial issue of statistical physics. In
the case of an infinitesimal perturbation that shifts the
system out of equilibrium, the classical fluctuation-
response theorem allows one to determine the linear re
sponse of the system in terms of its equilibrium proper-
ties, i.e., correlation functions. While the behavior of
infinitesimal perturbations gives relevant information for
problems of statistical mechanics, for climate and geo-
physical models the main goal is to characterize the re-
laxation of large perturbations, which cannot be obtained
from the linear response theorem. We present here a gen
eralization of the fluctuation-response relation, which
holds for finite amplitude perturbations, providing a tool
for extracting nonequilibrium behavior out of equilib-
rium features of the system. We also discuss the non
trivial role of the amplitude of perturbations in systems
where many characteristic time scales are present.

I. INTRODUCTION

The fluctuation-response~F/R! relation has a deep rel
evance in statistical physics and more generally in syst
with chaotic dynamics~in particular in hydrodynamics1!.
The relevance of a connection between ‘‘nonequilibrium
features ~i.e., response to an external perturbation! and
‘‘equilibrium’’ properties ~i.e., time correlations compute
according to the invariant measure! is well known in statis-
tical mechanics. We can mention the important Green–K
formulas in the linear response theory.2 Beyond statistical
physics, another field where the F/R problem has obvi
relevance is climate research.3 One of the key problems is
the possibility to understand the response of the present
mate to some violent changes~e.g., a volcanic eruption!. The
essential point is the possibility that the recovery of the
8061054-1500/2003/13(3)/806/6/$20.00
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mate system from a perturbation~response! can be estimated
from its time history~correlation times of the unperturbe
system!.

Assuming that the system is mixing and has invaria
probability density function~pdf! r~x!, it is possible to derive
the following F/R relation. Let us denote byx(t)
5(x1(t),...,xN(t)) the state of the system at timet. If at the
initial time t50 the system is perturbed bydx(0)
5(dx1(0),...,dxN(0)), theaverage evolution of the pertur
bation ^dxi(t)& with respect the unperturbed trajectory is

^dxi~ t !&5(
i

Ri , j~ t !dxj~0!, ~1!

where

Ri , j~ t !5 K dxi~ t !

dxj~0!L 5^xi~ t ! f j~x~0!!& ~2!

and the functionf j depends onr~x! as

f j~x!52
] ln r~x!

]xj
. ~3!

In Sec. II we will give a complete derivation of the abov
mentioned formulas.

As far as we know, the F/R problem had been stud
only for infinitesimal perturbations. For statistical mechan
problems it is relevant to deal with infinitesimal perturb
tions on the microscopic variables. In a similar way th
problem has importance in many analytical approaches to
statistical description of hydrodynamics where Green fu
tions are naturally involved both in perturbative theory a
closure schemes.1,4

On the other hand in geophysical or climate proble
the interest in infinitesimal perturbation seems to be rat
© 2003 American Institute of Physics
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academic, while the interesting problem is the behavior
relaxation of large fluctuations in the system due to f
changes of the parameters.

In this paper we want to address the problem of the F
relation for noninfinitesimal perturbations. In Sec. II we w
show that it is possible to generalize the F/R relation to la
perturbations, involving rare events of the invariant meas
Section III is devoted to a discussion on the connections,
differences, between our approach and well-known result
dynamical system theory. In Sec. IV we will discuss the a
plication to systems involving a single characteristic tim
while Sec. V is devoted to systems with many characteri
times. Section VI is devoted to conclusions and the Appen
contains some technical remarks.

II. THEORETICAL BACKGROUND

In the following we will consider a dynamical syste
with evolutionx(t)5f tx(0) of theN-dimensional vectorx.
For generality, we will explicitly consider the case in whic
the time evolution can also be not completely determinis
~e.g., stochastic differential equations!. We will assume the
existence of an invariant probability distributionr~x! and the
ergodicity of the system so that

^A&[ lim
T→`

1

T E
0

T

A~x~ t !!dt5m~A![E A~x!r~x!dx ~4!

for any ~smooth enough! observableA.
Our aim is the understanding of the mean respo

^dA(t)& of a generic observableA initially perturbed with
dA(0). Thefirst step is the study of one component ofx, i.e.,
^dxi(t)& with an initial ~nonrandom! perturbation dx(0)
5dx0 . Introducing the probability of transition from (x0,0)
to (x,t), W(x0,0→x,t) @for a deterministic system we hav
W(x0,0→x,t)5d(x(t)2f tx0)], we can easily write an ex
pression for the mean value of the variable computed al
the perturbed trajectoryxi8(t)5xi(t)1dxi(t):

^xi8~ t !&5E E xir8~x0!W~x0,0→x,t !dx dx0 , ~5!

wherer8(x) is the initial distribution of perturbed system
which is related to the invariant distribution byr8(x0)
5r(x02dx0). Noting that the mean value ofxi(t) can be
written in a similar way;

^xi~ t !&5E E xir~x0!W~x0,0→x,t !dx dx0 , ~6!

one has

^dxi~ t !&5E E xi

r~x02dx0!2r~x0!

r~x0!
r~x0!

3W~x0,0→x,t !dx dx0

5^xi~ t !F~x0 ,dx0!&, ~7!

where

F~x0 ,dx0!5Fr~x02dx0!2r~x0!

r~x0! G . ~8!
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For an infinitesimal perturbation dx(0)
5(dx1(0)¯dxN(0)) expanding Eq.~8! to first order one
ends with the expression

^dxi~ t !&52(
j

K xi~ t !
] ln r~x!

]xj
U

t50
L dxj~0!

[(
j

Ri , j~ t !dxj~0!, ~9!

which defines the linear response

Ri , j~ t !52K xi~ t !
] ln r~x!

]xj
U

t50
L ~10!

of the variablexi with respect to a perturbation ofxj . Rela-
tion ~10! is the generalization for non-Hamiltonian system
of the well-known fluctuation/response~F/R! relation.2

Let us note that in the general case the invariant mea
r~x! is not known, so Eq.~10! gives just qualitative informa-
tion. In the case of Gaussian distribution,r~x! factorizes and
the linear response recovers the correlator

Ri , j~ t !5
^xi~ t !xj~0!&2^xi&^xj&

^xjxj&2^xj&^xj&
. ~11!

In the case of finite perturbations, the F/R relation~7! is
typically nonlinear in the perturbationdx0 and thus no
simple relations analogous to Eq.~10! exist. Nevertheless we
can disentangle the different contributions in the response~7!
by studying an initial perturbation whose only nonzero co
ponent is thejth one,

d ( j )x~0!5~0,...,0,dxj~0!,0,...,0!. ~12!

We therefore generalize the F/R relation~10! to nonlinear
response ofxi to a perturbation on thej variable as

Ri , j~ t !5^xi~ t ! f j~0!&, ~13!

where f j is given by

f j~x0!5
r~x02d ( j )x~0!!2r~x0!

r~x0!dxj~0!
. ~14!

The explicit prediction of the response from Eq.~13!
requires the analytic expression of the invariant pdf, which
in general not known. Nevertheless Eq.~7! guarantees the
existence of a link between equilibrium properties of the s
tem and the response to finite perturbations. This fact ha
relevant consequence for systems with one single chara
istic time: a generic correlation@e.g., the correlation~11!# in
principle gives information on the relaxation time of fini
size perturbations, even when the invariant measurer is not
known.5

III. REMARKS ON THE CONNECTIONS BETWEEN F ÕR
RELATION, DYNAMICAL SYSTEM THEORY, AND
STATISTICAL MECHANICS

Since the F/R relation involves the evolution of diffe
ences between variables computed on two different real
tions of the system, it is natural to conclude that this issu
closely related to the predictability problem and, more
general, to chaotic behavior. Actually, a detailed analy
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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shows that the two problems, i.e., F/R relation and pred
ability, have only a very weak connection. For the sake
completeness, we briefly discuss here the analogies and
ferences between these two issues.

The typical problem for the characterization of predi
ability is the evolution of the trajectory differencedx(t), in
particular of^ lnudx(t)u& which defines the leading Lyapuno
exponentl. For smalludx~0!u and large enought one has

^ lnudx~ t !u&. lnudx~0!ult. ~15!

On the other hand, in F/R issue one deals with average
quantities with sign, such aŝdx(t)&. This apparently mar-
ginal difference is very important and it is at the basis of
famous objection by van Kampen related to the stand
derivation of the linear response theory.6 In a nutshell, using
the modern dynamical systems terminology, van Kampe
argument is as follows. Since in presence of chaosudx(t)u
grows exponentially in time, it is not possible to linearize E
~8! for time larger than (1/l)ln(D/udx(0)u), whereD is the
typical fluctuation of the variablex. As a consequence, th
linear response theory is expected to be valid only for
tremely small and unphysical perturbations, in clear d
agreement with the experience. A solution of this appar
paradox was proposed by Kubo who suggested that ‘‘insta-
bility [of the trajectories] instead favors the stability of dis
tribution functions, working as the cause of the mixing.’’ 7

More recent works have demonstrated the constructive
of chaos in F/R relation and the nonrelevance of v
Kampen’s criticism.8,9 The objection by van Kampen re
mains nevertheless relevant for numerical computations
F/R relation~see the Appendix!.

Fluctuation/response relation was developed in the c
text of statistical mechanics of Hamiltonian systems, bu
also holds for nonconservative systems, and even nond
ministic systems~e.g., Langevin equations! and has no gen
eral relation with ‘‘chaotic quantities’’ such as Lyapunov e
ponents or Kolmogorov–Sinai entropy. This generated in
past some confusion about the applicability of F/R relati
For example, some authors claimed~with qualitative argu-
ments! that in fully developed turbulence there is no relati
between equilibrium fluctuations and relaxation
equilibrium10 while the correct statement concerns the no
validity of the simplified relation~12! which holds only for
systems with Gaussian statistics.

Thanks to its general validity and robustness, the F
relation has also been used to obtain information on the
known invariant measurer~x! on the basis of the linear re
sponseRi , j (t). An important example comes from the fie
of disordered systems where the F/R had been applied to
study of aging phenomena.11

Concluding this short discussion on the connections
tween F/R relation, dynamical system theory, and statist
mechanics, we mention recent results about rigorous der
tion of the Onsager reciprocity relations12 and the macro-
scopic fluctuation theory for stationary nonequilibriu
states13 in a class of stochastic models describing interact
particles systems.
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IV. SYSTEMS WITH A SINGLE CHARACTERISTIC TIME

Let us start by studying two examples of systems with
single characteristic time: a deterministic chaotic system~the
Lorenz model! and a nonlinear Langevin process.

We first consider the Lorenz model14

dx

dt
5s~y2x!,

dy

dt
52xz1rx2y, ~16!

dz

dt
5xy2bz

with standard parameters for chaotic behavior:b58/3, s
510, andr 528. The correlation function~11! for the vari-
ablez, shown in Fig. 1, qualitatively reproduces the behav
of the response to different sizes of the perturbation of thz
variable, ranging from infinitesimal ones up to the size of t
attractor. The accuracy does not increase when decrea
the perturbation because the invariant distribution is
Gaussian~see Fig. 1! and thus the general correlation~10!
should be used. We observe that the use of Eq.~10! instead
of Eq. ~11! is in general much more difficult because th
invariant distribution is in general nonfactorable.

To better illustrate this point, let us now consider a sy
tem whose invariant probability distribution is known. In th
case we can quantitatively compare the differences betw
the responses to infinitesimal and finite perturbations. O
example is provided by the stochastic processx(t) deter-
mined by

dx

dt
52

dU~x!

dx
1A2Dj~ t !, ~17!

where j(t) is a white noise, i.e., a Gaussian process w
^j(t)&50 and ^j(t)j(t8)&5d(t2t8). The invariant prob-
ability distribution is15

r~x!5Ne2U(x)/D, ~18!

FIG. 1. Correlation function of thez variable of Lorenz model~solid line!
compared with the mean response to different perturbations of the s
variable. dz051022s ~dashed line!, dz05s ~dotted line!, with s
5A^z2&2^z&258.67.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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whereN is fixed by normalization.
A Gaussian pdf is obtained usingU(x)5x2/2, which

corresponds to the linear Ornstein–Uhlenbeck proc
dx/dt52x1A2Dj(t). Our example uses a modified ve
sion of the Gaussian case,

U5H 1
2 x2, uxu,1

uxu2 1
2 , uxu.1.

~19!

The resulting pdf, shown in the inset of Fig. 2, has a Gau
ian core, with exponential tails. Figure 2 also shows the
sponse function for an infinitesimal and for a finite size p
turbation. For both perturbations, the response func
measured from the perturbed trajectories is exactly predi
by statistics of the unperturbed system according to Eq.~13!,
while the Gaussian correlationC(t)5^x(t)x(0)&/s2 gives
only an estimate of the relaxation time. By construction,
pdf of this system has larger tails than in the Gaussian c
thus large fluctuations decay slower than small ones. In
linear case the mean response is simplyR(t)5exp(2t) and
does not depend on the amplitude of the initial perturbat
dx(0).

The results obtained for the Lorenz model and for
nonlinear Langevin equations suggest that if only one ch
acteristic time is present, the existence of the F/R rela
allows for some qualitative results even in the absence
precise knowledge ofr, both for infinitesimal and finite per
turbation.

V. SYSTEMS WITH MANY CHARACTERISTIC TIMES

In systems with many characteristic times, different c
relation functions do not show the same behavior, i.e.,
pending on the observable one can observe very diffe

FIG. 2. Mean response of the stochastic differential equationdx/dt
52B(x)1A2Dj(t), with D51, B(x)5x for uxu,1 andB(x)51 for uxu
.1, to different perturbations: largedx052.3s ~1! and infinitesimaldx0

57.631023s ~3!. In both cases the mean response is exactly predicte
the correlator̂ x(t) f (x(0))& ~dashed line fordx052.3s and dotted line for
dx057.631023) according to Eq. ~13! while the simple correlation
^x(t)x(0)&/s2 ~solid line! just gives an estimate of the relaxation time.
the inset we show the invariant probability distributionr(x)s vs x/s with
s5A^x2&2^x&251.32. Statistics is over 106 independent runs.
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time scales, corresponding to the different decay times of
correlation functionsCj , j5^xj (t)xj (0)&.5 In addition, at
variance with systems with one single time scale, here
amplitude of the perturbation can play a major role in det
mining the response, because different amplitudes may a
features with different time properties.

The link between equilibrium and relaxation properti
established by the F/R relation~13! suggests that it is pos
sible to relate different relaxation rates with the time sca
measured by means of correlations. Consider the case o
observableA which depends on all the variables of the sy
tem $x1 ,...,xN%. For infinitesimal perturbations, a straigh
forward generalization of Eqs.~1! and ~2! gives

^dA~ t !&5( ^A~x~ t !! f j~x~0!!&dxj~0!. ~20!

In the case of finite perturbations, as stressed in Sec
it is possible to write a F/R relation:

^dA~ t !&5^A~x~ t !!F~x~0!,dx~0!!& ~21!

in which, at variance with Eq.~20!, all the variables are
mixed. In Eq.~21! the relaxation properties depend explicit
on the initial perturbationdx~0!.

Depending on the choice ofA(x), different perturbations
on A correspond to different amplitudes of the perturbatio
on each variablexj . Consequently, one can think that it
possible to associate each perturbation to a certain subs
variables which are mainly perturbed. The relaxation
^dA(t)& will be ruled by the characteristic time of that pa
ticular subset.

In order to illustrate this issue we consider a shell mo
for turbulence.16 Shell models are a simplified model fo
turbulent energy cascade, which describe the dynamic
velocity fluctuations at a certain scale,n5kn

21 with a single
shell-variable un . Wave numberskn are geometrically
spaced askn5k0ln, allowing one to cover a large range o
scales with relatively few variables. A quadratic interacti
between neighbor shell reproduces the main features
three-dimensional turbulence. The specific model we will u
is

S d

dt
1nkn

2Dun5 i @kn11un11* un122eknun11un21*

1~12e!kn21un22un21#1 f n , ~22!

wheren is the molecular viscosity,f n is an external forcing
which injects energy at large scale, ande is a free parameter
In order to have the correct conservation laws~energy and
helicity! in the inviscid unforced case one has to fixe
51/2. The observable considered is the total energyE(t)

5 1
2 (n51

N uun(t)u2 which is the conserved quantity in the in
viscid, unforced limit.16

In order to study the response to perturbations with d
ferent amplitude onE, we consider the following perturbe
systems labeled withi 51,...,N: un

( i )(t)5un(t)1dun
( i )(t)

where the initial perturbationsdun
( i )(0) are set in the follow-

ing way:

y
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810 Chaos, Vol. 13, No. 3, 2003 Boffetta et al.
dun
( i )~0!5H 0, 1<n< i 21

A^uunu2& i<n<N.
~23!

This corresponds to a set of initial perturbations of the
ergy

^dEi~0!&5
1

2 (
n5 i

N

^uunu2&. ~24!

Such a perturbation is motivated by the fact that in
unperturbed system the energy is distributed among
shells according to the Kolmogorov scaling^uunu2&;kn

22/3,
and the smaller scales give smaller contributions to the
ergy E(t). Thus it is natural to assume that a small pert
bation of the energy will affect mainly the small scales.

For each perturbationdEi , the average response of e
ergy

K dEi~ t !

dEi~0!L 5K (n51
N uun

( i )~ t !u22uun~ t !u2

(n51
N uun

( i )~0!u22uun~0!u2L ~25!

reveals a close relation with the time correlation of the c
responding largest perturbed shellui(t), as shown in Fig. 3.
A measure of the relaxation time can be provided by
halving times T1/2 of the mean response, at whic
^dEi(T1/2)&51/2̂ dEi(0)&. The dependence of respon
times on the amplitude of the initial perturbation, shown
Fig. 4, reflects Kolmogorov scaling for characteristic tim
tn;kn

22/3;un
2;dEn ,

T1/2;dE. ~26!

The above-mentioned results on the shell model sh
that the response to a finite size perturbation of a system
many characteristic times may depend on the amplitude
the perturbation. Thanks to the existence of F/R relation
possible to establish a link between relaxation times of
ferent perturbation and characteristic times of the system

FIG. 3. Mean responseR(t)5^dE(t)/dE(0)& of the total energyE(t)
51/2(uunu2 of the shell model~22! to different amplitude perturbations
dE(0)55.531023 ~1!, dE(0)51.731023 ~3!, dE(0)54.531024 ~* !.
Varying the amplitude of the initial perturbation different relaxation rates
observed, and the response function is roughly similar to the correla
function of the corresponding largest perturbed shell: shelln512 ~solid
line!, shelln514 ~dashed line!, shelln516 ~dotted line!.
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VI. CONCLUSIONS

Starting from the seminal works of Leith,3,17 who pro-
posed the use of F/R relation for understanding the respo
of the climatic system to changes in the external forcin
many authors tried to apply this relation to different ge
physical problems, ranging from simplified models,18 to gen-
eral circulation models19,20 and to the covariance of satellit
radiance spectra.21 Most applications have not taken into a
count the limits of applicability of the F/R relation, whic
has been used as a kind of approximation. We have sh
that a F/R relation holds under very general conditions. T
derivation in Sec. II clearly shows the limits of applicabilit
in its simplest form@i.e., the Gaussian approximation~11!#.

Our main result is the demonstration that an ex
fluctuation/response relation holds also for noninfinitesim
perturbation. This relation involves the detailed form of t
invariant probability distribution. In particular, in order t
predict the mean response to large perturbations, one n
precise knowledge of the tails of the pdf.

We believe that this generalization of the usual line
response theory can be relevant in many applications. A
example, we can mention climate research, where our res
imply the possibility, at least in principle, to understand t
behavior of the system after a large impulsive perturbat
~e.g., a volcanic eruption! in terms of the knowledge ob
tained from its time history. Of course one has to take in
account the strong limitations due to the need to have a g
statistics of rare events.
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APPENDIX: TECHNICAL DETAILS

In this appendix we want to discuss how van Kamp
criticism is relevant for the numerical evaluation of infin
tesimal response function.

In numerical simulations,Ri , j (t) is computed perturbing
the variablexi at time t5t0 with a small perturbation of
amplitudedxi(0) and then evaluating the separationdxi(t)
between the two trajectoriesx(t) and x8(t) which are inte-
grated up to a prescribed timet15t01Dt. At time t5t1 the
variablexi of the reference trajectory is again perturbed w
the samedxi(0), and a newsampledx(t) is computed and
so forth. The procedure is repeatedM@1 times and the
mean response is then evaluated according to Eq.~11!.

In presence of chaos, the two trajectoriesx(t) andx8(t)
typically separate exponentially in time and the perturb
system relaxes to the unperturbed one only in average, th
fore the mean response is the result of a delicate balanc
terms which grow in time in different directions. The avera
error in the computation ofRi , j (t) typically increases in time
as eL(2)t/2/AM , where L(2) is the generalized Lyapuno
exponent.16 Thus very high statistics is needed in order
computeRi , j (t) for large t.8

We remark that the exponential growth is generally va
only for infinitesimal perturbation. When the perturbatio
reaches the typical size of the system, the difference betw
the perturbed and the unperturbed trajectory tends to s
rate. Thus, for finite amplitude perturbations the mean
sponse is the average of terms that remain of orderO(1),
and less statistics is required to obtain convergence. In
sense the mean response to finite perturbation is more re
sentative of the behavior of a single perturbation than in
infinitesimal case.

On the other hand, even if Eq.~13! is formally valid for
arbitrary large perturbations, for practical use an upper li
exists due to finiteness of statistics. To predict the relaxa

FIG. 5. Mean response of the stochastic differential equationdx/dt
52B(x)1A2Dj(t), with D51, B(x)5x1x3, to different perturbations:
finite dx051.5s ~1! and infinitesimaldx051.531022s ~3!. The mean
response is exactly predicted by the correlator^x(t) f (x(0))& ~dashed line
for dx051.5s and dotted line fordx051.531022s) according to Eq.~13!,
while the simple correlation̂x(t)x(0)&/s2 ~solid line! just gives an esti-
mate of the relaxation time. In the inset we show the invariant probab
distribution r(x)s vs x/s with s5A^x2&2^x&250.68. Statistics is over
106 independent runs.
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of a perturbationdx~0!, one needs sufficient statistics for th
convergence ofr(x(0)2dx(0)). This request is more sever
in systems where large fluctuations are suppressed. An
ample is provided by the stochastic model~17! with

U~x!5 1
2 x21 1

4 x4. ~A1!

Here the pdf has sub-Gaussian tails, and we observe the
posite behavior of the system~19!, as shown in Fig. 5. While
in the case with exponential tails we have a good statist
convergence for a perturbation greater than 2s in the second
system this perturbation is too large to obtain converge
even with huge statistics (109 runs!.
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