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We study the chaoticity and the predictability of a turbulent flow on the basis of high-resolution direct
numerical simulations at different Reynolds numbers. We find that the Lyapunov exponent of turbulence,
which measures the exponential separation of two initially close solutions of the Navier-Stokes equations,
grows with the Reynolds number of the flow, with an anomalous scaling exponent, larger than the one
obtained on dimensional grounds. For large perturbations, the error is transferred to larger, slower scales,
where it grows algebraically generating an “inverse cascade” of perturbations in the inertial range. In this
regime, our simulations confirm the classical predictions based on closure models of turbulence. We show
how to link chaoticity and predictability of a turbulent flow in terms of a finite size extension of the
Lyapunov exponent.
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The strong chaoticity of turbulence does not spoil
completely its predictability. Such an apparent paradox
is related to the hierarchy of time scales in the dynamics of
turbulence, which ranges from the fastest Kolmogorov time
to the slowest integral time.
Ruelle argued many years ago that the growth of infini-

tesimal perturbations in turbulence is ruled by the fastest time
scale [1]. This leads to the prediction that the Lyapunov
exponent is proportional to the inverse of the Kolmogorov
time, and hence, it increases with the Reynolds number.
Turbulent flows at high Re are therefore strongly chaotic [2].
Nonetheless, the time that it takes for a small perturbation to
affect significantly the dynamics of the large scales is
expected to be of the order of the slow integral time [3].
The ratio between these extreme time scales increases with
the Reynolds number and therefore allows a finite predict-
ability time to coexist with strong chaos [4]. This is evident
from everyday experience: while the Kolmogorov time of
the atmosphere (in the planetary boundary layer) is a fraction
of a second [5], the weather is predictable for days.
The study of the predictability problem in turbulence

dates back to the pioneering works of Lorenz [3] and of
Leith and Kraichnan [6,7]. The main idea of those studies is
that a finite perturbation at a given scale in the inertial range
of turbulence grows with the characteristic time at that
scale. Therefore, while an infinitesimal perturbation is
expected to grow exponentially fast, finite perturbations
grow only algebraically in time, making the predictability
of the flow much longer. These ideas were applied to the
predictability of decaying turbulence [8], two-dimensional
turbulence [9,10], and three-dimensional turbulence at
moderate Reynolds numbers [11].
In this Letter, we investigate, on the basis of high-

resolution direct numerical simulations, chaos in homo-
geneous-isotropic turbulence by measuring the growth of

the separation between two realizations starting from very
close initial conditions. In the limit of infinitesimal sepa-
ration, we compute the leading Lyapunov exponent of the
flow (the rate of exponential growth of the separation [12]),
and we find that it increases with the Reynolds number, but
surprisingly faster than what is predicted on dimensional
grounds [1] and what is observed in low-dimensional
models of turbulence [13]. For a larger separation, we
observe the transition to an algebraic growth of the error, in
agreement with the predictions of closure models [7].
Finally, we discuss the relation between chaoticity and
the predictability time of turbulence (defined as the average
time for the perturbation to reach a given threshold) in
terms of the finite-size generalization of the Lyapunov
exponents.
We consider the dynamics of an incompressible velocity

field uðx; tÞ given by the Navier-Stokes equations

∂tuþ u · ∇u ¼ −∇Pþ νΔuþ f ; ð1Þ

where P is the pressure field and ν is the kinematic
viscosity of the fluid. The term f represents a mechanical
forcing needed to sustain the flow. In the following, we will
present results in which f is a deterministic forcing with
imposed energy input [14,15]. The Navier-Stokes is solved
numerically by a fully parallel pseudospectral code in a
cubic box of size L at resolutionN3 with periodic boundary
conditions in the three directions. The main parameters
of the simulations are reported in Table I, and further
details are found in the Supplemental Material [16], which
includes Refs. [17–19].
In the presence of forcing and dissipation, the turbulent

flow reaches a statistically steady state in which the energy
dissipation rate ε ¼ νhð∂αuβÞ2i is equal to the input of
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energy provided by the forcing (brackets indicate average
over the physical space). The turbulent state is characterized
by a Kolmogorov energy spectrum EðkÞ ¼ Cε2=3k−5=3.
The kinetic energy E ¼ R

EðkÞdk ¼ ð1=2Þhjuj2i fluctuates
around a constant mean value, which defines the typical
intensity of the large scale flowU ¼ ð2E=3Þ1=2. The integral
time is defined asT ¼ E=ε, and the integral scale isL ¼ UT.
We performed a series of simulations at increasing

Reynolds number Re ¼ UL=ν. In order to ensure that
the viscous range is resolved with the same accuracy in all
the simulations, the increase of Re as been achieved by
increasing the resolution N and reducing the viscosity in
order to keep fixed kmaxη ¼ 1.7, where kmax ¼ N=3 is the
maximum resolved wave number and η ¼ ðν3=εÞ1=4 is the
Kolmogorov scale [19].
For the study of chaos and predictability, we are interested

in measuring the growth of an uncertainty in the velocity
field. Starting from an initial velocity field u1ðx; 0Þ in the
stationary turbulent state, we generate a perturbed velocity
field u2ðx; 0Þ, obtained by adding to the reference field a
small white noise [the relative amplitude of the perturbation
is Oð10−4Þ]. We consider very small initial perturbations
in order to guarantee that the separation between the two
realizations is along the most unstable direction in phase
space when the error enters in the nonlinear stage, and
therefore, we do not consider the effect of the distribution of
the initial error on the predictability of the flow [20]. The two
realizations of the velocity field are then simultaneously
evolved in time according to (1). For each resolution, we
performed an average over several independent realizations.
A natural measure of the uncertainty is the error energy

EΔðtÞ and the error energy spectrum EΔðk; tÞ, defined on
the basis of the error field δu≡ ðu2 − u1Þ=

ffiffiffi
2

p
as

EΔðtÞ ¼
Z

∞

0

EΔðk; tÞdk ¼ 1

2
hjδuðx; tÞj2i: ð2Þ

With the normalization coefficient 1=
ffiffiffi
2

p
, we have EΔ ¼ E

for completely uncorrelated fields.
Figure 1 shows the time evolution of the error energy EΔ

for the simulation at the highest Re, averaged over an

ensemble of ten independent realizations. In the initial stage,
the error grows exponentially as EΔðtÞ ¼ EΔð0Þ expðL2tÞ
(see inset of Fig. 1), where L2 is the generalized Lyapunov
exponent of order 2 [21]. At later times, we observe a regime
of linear growth of the error EΔðtÞ≃ εt. The growth rate
displays large fluctuations as the error approaches its
saturation value EΔðtÞ≃ E. This is due to the fluctuations
of the kinetic energy, which occur on the same time scale of
the saturation of the error and are associated to the dynamics
of the large scales. It is worth to notice that the late regime of
saturation of the error might display a nonuniversal behavior
with respect to the forcing mechanism. As an example,
the deterministic force used in our study is proportional to
the large-scale velocity. At late times, when the error has
significantly affected the large scales, the force acting on the
two fields u1 and u2 becomes different. This could induce a
faster saturation of the error with respect to other forcing
mechanism which enforce large-scale correlations.
During the initial stage of exponential growth, the error

energy spectrum EΔðk; tÞ is peaked at wave numbers
around the dissipation range k≃ kη ≃ 1=η and grows
exponentially in a self-similar way, as shown in Fig. 2.
At later times, the error propagates to lower wave

numbers, and the error spectrum develops a scaling range
EΔðkÞ ∼ k−5=3 (see Fig. 3). At each time, it is possible to
identify the error wave number kEðtÞ at which the error
energy spectrum has reached a given fraction α≃ 1 of the
energy spectrum EΔðkE; tÞ=EðkEÞ ¼ α. The two velocity
fields u1 and u2 can be then assumed to be completely
decorrelated at scales smaller than 1=kE and still correlated
at larger scales.
The transition from the exponential growth to the linear

growth of EΔ occurs when the two fields are completely
decorrelated on the dissipative scales, that is when kE ≃ kη.
The idea, originally proposed by Lorenz [3], is that the time
that it takes to decorrelate completely the two fields at a
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FIG. 1. Error energy EΔðtÞ growth for the simulation at
N ¼ 1024. The error energy is averaged over ten different
realizations (black line). The fluctuations of the error energy
within one standard deviation from the mean are represented by
the shaded area. Inset: The initial exponential growth of the error.

TABLE I. Parameters of the simulations. For all the simulations,
the energy input is ε ¼ 0.1, and the box size isL ¼ 2π.N is thegrid
resolution, Re ¼ UL=ν theReynolds number,E the kinetic energy,
U ¼ ð2E=3Þ1=2 is the large-scale velocity, L ¼ UE=ε the integral
scale, η ¼ ðν3=εÞ1=4 the Kolmogorov scale, τη ¼ ðν=εÞ1=2 the
Kolmogorov time, and λ the Lyapunov exponent.

N Re E U L η τη λ

1024 8224 0.700 0.683 4.78 0.005 0.063 2.72
512 3062 0.678 0.672 4.56 0.01 0.10 1.39
256 1170 0.665 0.666 4.43 0.02 0.16 0.76
128 434 0.643 0.655 4.21 0.04 0.25 0.44
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given scale l≃ 1=kwithin the inertial range is proportional
to the turnover time of the eddies at that scale τl ∼
ε−1=3l2=3 [22]. This leads to the dimensional prediction

kEðtÞ≃ ε−1=2t−3=2 ð3Þ
for the evolution of the error wave number, which is
confirmed by our numerical finding (see inset of Fig. 2).
Equation (3) provides an estimation of the predictability

time TP that an infinitesimal error takes to contaminate a
given wave number k, TpðkÞ ¼ Aε−1=3k−2=3 [7,23], where
the dimensionless coefficient A depends on the threshold α
(and possibly on the Reynolds number). In our simulation
at Re ¼ 8516, we measure A ¼ 12 for α ¼ 0.5 to be
compared with the value A ¼ 10 obtained from early
studies with closure models in the limit of infinite Re [7].
Integrating the error spectrum with the ansatz EΔðk; tÞ ¼

0 for k < kEðtÞEΔðk; tÞ ¼ EðkÞ for k > kEðtÞ and using the
dimensional scaling (3), one obtains the prediction for the
linear growth of the error energy,

EΔðtÞ ¼ Gεt: ð4Þ
The value of the dimensionless constant G measured in the
simulation at Re ¼ 8516 is G ¼ 0.45� 0.05, not far from
that obtained by the test field model closure G ¼ 0.23 [7].
As already discussed, in the early stage, the perturbation

can be considered infinitesimal and therefore grows expo-
nentially as shown in the inset of Fig. 1. This is the signature
of the chaotic nature of the flow and the predictability is
characterized by the Lyapunov exponent λ. On dimensional
grounds, the Lyapunov exponent can be assumed to be
proportional to the inverse of the fastest time scale of the flow,
i.e., the Kolmogorov time scale τη ¼ ðν=εÞ1=2 [1]. Since the
ratio between τη and the integral time scale T increases with
theReynolds number asT=τη ∼ Re1=2, one has the prediction

that the Lyapunov exponent is proportional to the square root
of the Reynolds number,

λ≃ τ−1η ≃ T−1Re1=2: ð5Þ
Therefore, the predictability time TP for infinitesimal per-
turbations vanishes in the limit of large Re.
The dimensional prediction (5) is obtained under the

assumption of self-similarity of the velocity field with
Kolmogorov scaling exponent h ¼ 1=3 [22] For a generic
exponent h ∈ ð0∶1Þ, one has λ≃ τ−1η ≃ T−1Reβ with
β ¼ ð1 − hÞ=ð1þ hÞ. Averaging over the multifractal spec-
trum DðhÞ allows us to take into account intermittency
corrections, and this gives β ¼ 0.459 [13,24].
We have computed the Lyapunov exponent λ by meas-

uring the average rate of logarithmic divergence of two
close realizations, a standard method in the study of
dynamical systems [21,25,26], for the simulations at differ-
ent Reynolds numbers (see Table I). Interestingly, we find
that the Lyapunov exponent increases with Re faster than
the dimensional prediction (5), as shown in Fig. 4. Fitting
the measured values with a power law λT ≃ Reβ gives the
exponent β ¼ 0.64� 0.05. It is remarkable that the mea-
sured deviation from the dimensional prediction β ¼ 0.5 is
opposite with respect to the predicted correction due to
intermittency (see also [27] for recent results with similar
corrections). Our findings suggest that the dimensional
estimate of the Lyapunov exponent as the inverse
Kolmogorov time does not give an accurate characteriza-
tion of the chaoticity of a turbulent flow. The inset of Fig. 4
shows that indeed the quantity λτη increases with Re.
Since the Lyapunov exponent is an average quantity, it is

interesting to investigate its fluctuations and their depend-
ence on Re. We have therefore measured the variance μ of
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FIG. 2. The spectrum of the error EΔðk; tÞ at times t=T ¼ 0.07,
0.14, 0.21, 0.28, 0.35 (from bottom to top) in the linear phase for
the simulation at N ¼ 1024 averaged over ten independent
realizations. Inset: The error energy EΔ as a function of time
in semilogarithmic plot.
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FIG. 3. The spectrum of the error EΔðk; tÞ at times t=T ¼ 0.42,
0.56, 0.70, 0.84, 1.1, 1.4, 1.8, 2.1 (dashed lines, from bottom to
top) compared with the stationary energy spectrum EðkÞ (solid
line) for simulations at N ¼ 1024 averaged over 10 independent
realizations. The dotted line represents the Kolmogorov scaling
k−5=3. Inset: The error wave number kE as a function of time
(crosses), compared with the dimensional scaling kE ∼ t3=2

(dotted line).
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the distribution of the finite-time Lyapunov exponents, a
standard measure of the fluctuations in a chaotic system
[12,21] (see also the Supplemental Material [16]). The
results, plotted in Fig. 4, shows that also μτη increases with
Re and faster than the Lyapunov exponent (a fit gives
μT ≃ Re1.2; although, the errors here are large).
The connection between predictability and chaoticity in

turbulent flows can be extended also to finite perturbations,
of the order of the velocities of the inertial range, by means
of the finite size Lyapunov exponents (FSLE) ΛðδÞ. The
FSLE has been introduced to measure the chaoticity of
systems with many characteristic time scales [4,24]. It is
defined in terms of the average time TrðδÞ that it takes for
a perturbation of size δ to grow by a factor r, as ΛðδÞ ¼
lnðrÞ=hTrðδÞi (where the average is now over different
realizations). We remind that performing averages at fixed
times is not equivalent to averaging at fixed error size. The
latter procedure was found to be more effective in inter-
mittent systems, in which scaling laws can be affected by
strong fluctuations of the error (as in Fig. 1).
In the limit δ → 0, the FSLE recovers, by definition, the

usual Lyapunov exponent, i.e., limδ→0ΛðδÞ ¼ λ [24]. For
finite errors, ΛðδÞ measures the average growth rate of the
uncertainty of size δ. Following the idea of Lorenz [3] that a
perturbation of size δ ∼ ul within the inertial range of
turbulence grows with the local eddy turnover time
τl ∼ ε−1=3l2=3 ∼ ε−1u2l, one obtains the prediction [24]

ΛðδÞ≃ εδ−2: ð6Þ

In Fig. 5, we show the FSLE as a function of the error δ
for three values of Re. For small δ, the FSLE approaches the
constant value ΛðδÞ≃ λ, while in the inertial range, we
observe the dimensional scaling (6). The crossover between

the two regimes is expected to occur at δ� ≃ ðε=λÞ1=2.
Rescaling the error δ with δ� and ΛðδÞ with λ, we find a
good collapse of the two regimes of infinitesimal and finite
errors, as shown in the inset of Fig. 5. Figure 5 also shows
that the crossover range between the two regimes increases
with Re. One possible explanation for this long crossover is
that the transition between the two regimes involves the
dynamics of eddies, which are at the border between the
inertial and the dissipative scales, in the so-called inter-
mediate dissipative range [22]. The extension of this range
is known to grow with the Reynolds number, and this could
cause the broadening of the crossover regime for the FSLE.
Remarkably, Fig. 5 shows that in the scaling range

ΛðδÞ ∼ δ−2, the error growth rate Λ becomes independent
both on the Reynolds number and on the values of the
Lyapunov exponent. The independence of the FSLE in the
scaling range on the value λ observed for infinitesimal
errors provides a clear explanation of how in turbulent
flows it is possible to observe the coexistence of long
predictability time at large scales and strong chaoticity at
small scales.
In conclusion, we studied the chaotic and predictability

properties of fully developed turbulence by simulating two
realizations of the velocity field initially separated by a very
small perturbation. At short times, the separation increases
exponentially as a consequence of the chaoticity of the
flow. Finite perturbations increase linearly in time, as
predicted by dimensional arguments, and the time for
the perturbation to affect a wave number k in the inertial
range is proportional to ε−1=3k−2=3.
The Lyapunov exponent is found to grow with the

Reynolds number faster than what predicted by a dimen-
sional argument and intermittency models and, as a
consequence, the product λτη grows with Re. This indicates
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that the strong, intermittent fluctuations of turbulence at
small scales give diverse contributions on different observ-
ables. In addition to the interest for many applications,
turbulence is a prototypical example of system with many
scales and characteristic times. Our results on the chaoticity
of turbulence and its dependence on the number of active
degrees of freedom are therefore of general interest for the
study of extended dynamical systems.
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