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Incompressible Rayleigh-Taylor mixing in circular and spherical geometries
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We present a numerical investigation of the turbulent evolution of the mixing layer developing from the
Rayleigh-Taylor instability for miscible incompressible fluids in circular (in two dimensions) and in spherical (in
three dimensions) geometries in the Boussinesq approximation. We show that the main difference caused by the
convergent geometry with respect to the planar case is that the center of the mixing layer drifts toward the center
of the domain during the evolution of the mixing layer. A similar effect is observed for the radial profile of the
density flux. We derive a simple geometrical relation for this inward drift based on mass conservation. In the late
stage of the evolution we observe also the appearance of an inward-outward asymmetry in the radial profiles.
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I. INTRODUCTION

Rayleigh-Taylor (RT) instability and mixing, produced by
the relative acceleration of two fluids of different densities, is
of great importance in many natural and industrial processes.
RT turbulent mixing occurs in disciplines as diverse as astro-
physics [1,2], atmospheric physics [3], inertial confinement
fusion [4], and laser-matter interactions [5,6] (see also [7–11]
for recent reviews).

In many of these applications, one needs to take
into account different physical effects due to, e.g., non-
Boussinesq effects, compressibility, and immiscibility (see,
e.g., Refs. [12–16]). Nonetheless, even in these cases, the
incompressible Boussinesq model is often used for its theo-
retical and numerical simplicity [17].

Most of the studies in RT instability and mixing are per-
formed in a flat geometry, with a planar interface orthogonal
to the uniform acceleration. Nonetheless, early studies already
discussed also the RT instability in spherical or cylindrical
geometry, in particular for application to cavitation [18–21].
More recently, linear and weakly nonlinear analysis of RT
phenomena in cylindrical and spherical geometry with a radial
acceleration has been done by several authors and the effects
of convergent and divergent geometry on the linear instability
and on the weakly nonlinear evolution have been discussed
[22–25].

In this work we investigate, by means of direct numeri-
cal simulations of the Boussinesq model, the effects of the
interface curvature on the turbulent, strongly nonlinear stage
of the evolution of the mixing layer between two miscible,
incompressible fluids in two-dimensional (2D) circular and
three-dimensional (3D) spherical geometries. It is well known
that dimensionality of the flow affects the dynamics of the
RT system [26]. In 3D the buoyancy force is mostly active at
large scale and it originates a direct cascade of kinetic energy
inside the mixing layer with Kolmogorov-Obukhov scaling
laws for the velocity and density fluctuations [26,27]. In 2D
the buoyancy is balanced scale by scale by the process of the
inverse energy cascade. This results in the Bolgiano-Obukhov

phenomenology [26,28]. A dynamical transition from 3D to
2D scaling has been observed in numerical simulations of the
RT system confined in a thin layer [29]. The different scaling
of the RT system in 3D and 2D has motivated a strong interest
for the 2D case [28,30], while the role of dimensionality in
RT systems has been addressed in general in recent reviews
[7,9]. Moreover, dimensional effects on the mixing properties
in both bulk and porous RT has been recently investigated in
[31].

Here, we focus on the influences of the convergent ge-
ometry, which are expected to depend on the dimensionality
of the flow as well. We find that several properties remain
almost unaffected with respect to the planar case. The shape
of the density profile is very well captured by a nonlinear
diffusive model developed for planar RT [32]. The temporal
growth of the width of the mixing layer follows the dimen-
sional prediction h(t ) ∝ t2 with a dimensionless coefficient
close to that of the planar case. Also the scaling of the
Nusselt number as a function of the Rayleigh number is
unchanged.

The main effect of the circular and spherical geometry is an
inward drift of the central radial position of the density profile
which appears during the expansion of the mixing layer. We
show that this effect is due to the conservation of mass and
it can be predicted in terms of a simple geometrical relation
between the position of the center and the extension of the
mixing layer. The explicit form of the geometrical relation is
different in 2D circular and 3D spherical geometry, thus con-
firming the importance of the dimensionality in the evolution
of the system. The profile of density flux displays a similar
drift and, moreover, it develops an inward-outward asymmetry
in the late stage of the evolution.

II. MODELS AND METHODS

We consider the Boussinesq model for an incom-
pressible velocity field u(r, t ) coupled to a density field
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ρ(r, t ) = ρ0[1 + θ (r, t )] in a circular and spherical domain
(of radius R1)

∂u
∂t

+ u · ∇u = − 1

ρ0
∇p + ν∇2u + gθ, (1)

∂θ

∂t
+ u · ∇θ = κ∇2θ, (2)

with the acceleration acting in the radial direction r̂, g = gr̂.
We remark that, within the Boussinesq approximation, the
direction of g (i.e., the sign of the amplitude g) is irrelevant
since Eqs. (1) and (2) are invariant as g → −g and θ → −θ .
Therefore, the dynamics in the convergent and divergent ge-
ometry are equivalent and in the following we will consider
the case g > 0 only. The initial unstable density profile we
take is

θ (r, 0) = (θ0/2)sgn(R0 − r), (3)

where R0 < R1 is the initial position of the unstable interface
and θ0 = �ρ/ρ0 represents the dimensionless density jump
which defines the Atwood number A = θ0/2. The density of
the inner fluid (for r < R0) is ρin = ρ0(1 + θ0/2), while the
outer fluid (for r > R0) has density ρout = ρ0(1 − θ0/2). We
remark that the Boussinesq model (1) and (2) is obtained
under the assumption of small Atwood numbers and, within
this limit, the value of A simply rescales the characteristic time
of the evolution.

Linear stability analysis of cylindrical [33] and spherical
[25] interfaces shows that, for sufficiently small viscosity,
the most unstable mode kmax is at short wavelength (i.e.,
kmaxR0 � 1) and therefore the curvature of the interface can
be neglected and the growth rate for wave number k can
be approximated by γ (k) =

√
Agk + (νk2)2 − νk2 [34]. As

the instability enters into the nonlinear phase, and eventually
becomes turbulent, the typical scale of the perturbation (the
size of the density plumes) increases [7] and curvature effects
are expected to become relevant.

In order to study the effects of the circular domain in
the evolution of RT turbulence, we performed a set of direct
numerical simulations of Eqs. (1) and (2) with a pseudospec-
tral code. Simulations are done in a square domain of size
L on a regular Cartesian grid at resolution N2 = 20482. We
have checked that the effect of the grid geometry is irrele-
vant by comparing the results with simulations at resolution
N2 = 40962. Polar singularity is avoided by putting g = 0
in the origin and the gravity field gr̂ is applied in the do-
main r � R1 = 2R0. Simulations are stopped when density
fluctuations exit this domain. The perturbation on the circu-
lar interface at r = R0 is given by a superposition of modes
around kmax with random phases. M = 10 simulations with
different realizations of the random phases are averaged in
order to increase the statistical accuracy of the results. While
most of the results presented are in two dimensions, we have
also performed one simulation of the spherical 3D geometry
at moderate resolution N3 = 5123 to compare the effects of
the dimensionality.

Results will be made dimensionless by using R0 and
τ = (R0/Ag)1/2 as space and time units, respectively. The
parameters of the simulations are Ag = 0.25, ν = κ = 10−4

FIG. 1. Snapshots of the density field (upper) and of the vorticity
field (lower) at an early time (t = 1.6τ , left) and in the late stage of
the evolution (t = 4.8τ , right) from a two-dimensional simulation.
Colors represent different densities, from θ = 0.5θ0 (white) to θ =
−0.5θ0 (black) and vorticity (blue and red for positive and negative)

(ν = κ = 5 × 10−4 in 3D), L = 2π , and R0 = L/4. In the
analysis of the numerical data we will consider radial profiles
defined as the average of the angular coordinate (and over
the different realizations), as for the radial density profile
θ (r) = 1

Sd

∫
θ (r′)δ(|r′| − r)ddr′, where Sd (r) is the surface of

the d sphere of radius r.

III. RESULTS

The development of the RT instability produces a mixing
layer which expands radially both in the inner and outer di-
rections. Figure 1 shows two snapshots of the density field
and of the vorticity field in the early and late stage of the
evolution. It is evident that, while the typical size of the initial
plumes is much smaller than the radius of interface R0, at later
times they have grown to a size comparable with the radius of
the internal interface and therefore we expect that curvature
effects become important and that the inner-outer symmetry
around R0 is broken.

In Fig. 2 we plot the radial density profile θ (r) at time
t = 4τ together with the initial jump profile at t = 0. As in
planar RT turbulence the mixing region develops an almost
linear density profile which connects the two unmixed re-
gions. The extension of the mixing layer h(t ), defined as the
region where |θ (r)| < θ0/2, is usually defined in terms of a
local threshold value [35] or integral quantities [2]. Here we
use a nonlinear diffusive model, recently developed for planar
RT turbulence [32], that fits the numerical data remarkably
well. The model, based on a density dependent diffusivity,
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FIG. 2. Radial density profile θ (r) averaged over 10 independent
runs of the 2D simulation at time t = 4.0τ (red continuous line).
Black dashed line represents the initial profile at t = 0. Blue dotted
line is the fit with the diffusive model (4).

predicts for the mixing layer the polynomial profile

θ (r) = θ0
r − Rc

4L

(
(r − Rc)2

L2
− 3

)
(4)

centered on Rc and defined for Rc − L � r � Rc + L [while
θ (r) = θ0/2 for r � Rc − L and θ (r) = −θ0/2 for r � Rc +
L]. Within this model, the values of L and Rc are free parame-
ters which are determined by fitting the radial density profiles
obtained from the numerical simulations. In the current study,
the width of the mixing layer is defined as h = 2L from the
values of the parameter L given by the fit.

We remark that the profile (4) is antisymmetric with respect
to the central point Rc at which θ = 0. While this is justified
in the case of the planar Boussinesq model, in this case we
observe a small departure from the inward-outward symmetry
in the late stage of the evolution. Nonetheless, as shown in
Fig. 2, the model (4) is able to reproduce accurately the radial
density profile and to measure the extension of the mixing
layer both in 2D and in 3D.

The efficiency of the mixing process can be characterized
by the mixed mass [36]. Within the Boussinesq approximation
the mixed mass is proportional to the variance of the density
field and, for the present configuration, can be written as

M =
∫

Sd (r)m(r)dr, (5)

where m(r) = [θ2
0 − 4θ2(r)]/θ2

0 is the mixed mass profile
which varies between 0 and 1. Figure 3 shows the mixed
mass profiles at the three different times (two corresponding
to Fig. 1). We observe that while at early time the mixing
is almost complete (because the small scales of the density
plumes), at later times the mixed mass profile reaches a con-
stant value m � 0.6 in the center of the mixing layer. At later
times we also observe a shift of the profile towards the center
of the domain. The time evolution of the global mixed mass is
plotted in the inset of Fig. 4.

Figure 4 plots the width of the mixing layer h(t ) ob-
tained by fitting the density profiles at different times with
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FIG. 3. Mixed mass profile m(r) averaged over 10 independent
runs of the 2D simulations at time t = 1.6τ (red line), t = 3.2τ (blue
line), and t = 4.8τ (black line).

the model (4). At short time, the motion of coherent den-
sity plumes produces an overshooting in the extension of the
mixing layer, while for t � 2τ the incoherent and turbulent
mixing layer grows according to the dimensional prediction
h(t ) � αAgt2 (see compensated plot in the inset of Fig. 4).
The precise value of the dimensionless coefficient α = 0.084
is obtained by fitting h(t ) with the quadratic law of the type
h(t ) = αAg(t − t0)2, which takes into account the presence of
the initial transient [37]. This result is compatible with 2D
simulations in planar configuration [31] (taking into account
the different definitions of h).

From Fig. 2 (and also from Fig. 3) it is evident that the
zero-crossing point Rc(t ) at long time is different from R0.

0

 0.5

1

 1.5

2

0 1 2 3 4 5 6

h/
R

0

t/τ

0

 0.05

 0.1

 0.15

0 1 2 3 4 5

h/
(A

 g
 t2 )

t/τ

0

 0.1

 0.2

0 1 2 3 4 5

M

t/τ

FIG. 4. Temporal growth of the mixing layer h(t ) = 2L com-
puted from the fit of the 2D simulations with the model (4) at
different times. The black line represents the dimensional prediction
h(t ) = αAg(t − t0)2 fitted for t � 2τ with α = 0.084. Red diamonds
represent the evolution for the 3D simulation. Upper inset: h(t ) com-
pensated with the dimensional prediction Agt2. Lower inset: mixed
mass M as a function of time.
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FIG. 5. Relative displacement of the central position of the pro-
file Rc (red squares) and position of the density flux 1 (blue circles)
as a function of the half mixing layer width L. Rc is computed as
the point at which θ (Rc ) = 0. Red diamonds represent the central
position Rc from 3D simulation. The black continuous line represents
the geometrical prediction (6) in 2D; the black dashed line is the 3D
prediction (7).

This is a consequence of mass conservation. In two dimen-
sions, the mass of the system of two fluids is given by M(t ) =∫

ρ̄(r, t )2π r dr = Mout + ∫
ρ0[θ̄ (r, t ) + θ0/2]2π r dr, where

Mout = ∫
ρout2π r dr is the mass of the whole volume filled

with the fluid with smaller density ρout, while the integral∫
ρ0[θ̄ (r, t ) + θ0/2]2π r dr is the extra mass due to the heav-

ier fluid with density ρin = ρout + �ρ (with �ρ = ρ0θ0). At
the initial time t = 0 one has M(0) = Mout + ρ0θ0πR2

0. The
mass at time t can be computed using the expression (4) for
the density profile. Imposing the conservation of mass M(t ) =
M(0) one obtains the simple geometrical relation 5R2

c + L2 =
5R2

0 and therefore a relation between the central point Rc and
the extension of the mixing layer L

Rc

R0
=

√
1 − L2

5R2
0

. (6)

Relation (6) shows that Rc(t ) � R0, i.e., the interface moves
toward the center of the domain as the mixing layer grows.
We remark that the quadratic dependence in (6) is general
since it is a consequence of mass preservation in 2D, while
the numerical coefficients depend on the specific model for
θ (r). Recently, a model for the initial stage of instability, in
the weakly nonlinear regime, has been proposed on the basis
of a similar principle of mass conservation [23].

The geometrical relation (6) can be generalized to arbitrary
dimensions by equating the initial mass M(0) = ∫

ρ̄(r, 0)dd r
with the mass M(t ) = ∫

ρ̄(r, t )dd r at time t . In general one
obtains a relation of the form Rd

0 = (Rc + L)d f+(Rc/L) +
(Rc − L)d f−(Rc/L), in which the explicit form of the func-
tions f± depends on the dimension d and on the functional
form of the radial density profile. In three dimensions, using
the expression (4) one obtains the simple relation

5R3
c + 3L2Rc = 5R3

0, (7)

which gives the dependence of Rc as a function of L.
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FIG. 6. Nusselt number as a function of the Rayleigh number.
The black continuous line represents the ultimate scaling Nu =
0.02Ra. Inset: skewness of the density flux S as a function of time.

In Fig. 5 we plot the relation between Rc and L obtained
from numerical simulations together with the geometrical pre-
dictions (6) and (7). In 2D, we observe that at the end of the
simulation the center of the mixing layer has moved about
15% towards the center of the domain. In 3D we find that
this geometrical effect is enhanced, because of the different
dependence of the volume element on the radial coordinate r.
Both in 2D and 3D, the geometrical models (6) and (7) are
in excellent agreement with the numerical data, without free
parameters. We remark that when Rc � L the mixing layer has
completely filled the inner part of the interface. Nonetheless,
we find that, even in this case, the model (4) fits the density
profile well and (6) is in agreement with the data.

We also investigate the effects of the circular geometry
on the radial density flux 〈urθ〉 ≡ 1

2L

∫ Rc+L
Rc−L π (r)dr, which is

defined as the average over the extension of the mixing layer
of the radial profile of density flux π (r) = urθ (r), where ur is
the radial component of the velocity field.

The density flux is quantified in dimensionless variables
by the Nusselt number Nu = 1 + 〈urθ〉h/(κθ0). Extensive nu-
merical simulations have shown that in the Rayleigh-Taylor
mixing the Nusselt number scaling, as a function of the
Rayleigh number Ra = gθ0h3/(νκ ), follows the ultimate state
regime Nu ∼ Ra1/2 [38]. Figure 6 shows that the ultimate
state scaling is observed also in the circular geometry in the
late stage of the simulation, when Ra � 108. We find a close
agreement with the results of numerical simulations in 2D
planar geometry [28].

Similar to what is observed for the density profile, the
main effect of the circular geometry on the density flux is
an inward drift of its mean radial position. This effect can
be quantified by introducing the moments of the radial flux
p = ∫

rpπ (r)dr/
∫

π (r)dr. The mean radial position of the
density flux is given by 1. As shown in Fig. 5, 1 moves
towards the center of the circular domain as the width of the
mixing layer increases. The inward drift of the mean radial
position of the flux 1 is similar to what is observed for the
center of the density profile Rc.
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A measure of the asymmetry of the radial profile of density
flux π (r) is provided by the skewness S = (3 − 3

1)/(2 −
2

1)3/2. As shown in the inset of Fig. 6, we find that in the
early stage of the evolution t � 2τ the skewness is almost null
and therefore the flux is symmetric, as in the planar RT [38].
The inward-outward symmetry of the flux breaks suddenly at
t � 3τ , when the skewness becomes positive indicating that in
the late stage of the evolution the density flux is more intense
toward the outer region of the mixing layer. We note that this
asymmetry is not trivially related to the inward drift of 1,
which manifests already at the beginning of the evolution.

IV. CONCLUSIONS

We have studied the effects of the curvature of the in-
terface in incompressible Rayleigh-Taylor turbulent mixing

in a circular 2D and spherical 3D domains subject to radial
acceleration. The main result of our study is that, while the
shape of the density profile remains almost unaffected with
respect to the planar interface, its central radial position Rc

moves toward the center of the domain as a consequence of
the mass conservation in the convergent geometry. We have
shown that in 2D the inward drift of Rc is well captured by a
geometrical relation without free parameters which involves
solely the initial radial position of the interface R0 and the
width of the mixing layer L. The simulation in 3D spherical
geometry shows that this geometrical effect is stronger than
in 2D, and that it can be predicted by the same physical
argument. It would be interesting to extend the study of the
effects of convergent geometry also to cases in which the
radial acceleration g is not constant and/or to more realistic
models beyond the Boussinesq approximation.
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