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Transient inverse energy cascade in free surface turbulence
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We study the statistics of free surface turbulence at large Reynolds numbers produced by
direct numerical simulations in a fluid layer at different thicknesses with fixed characteris-
tic forcing scale. We observe the production of a transient inverse cascade, with a duration
which depends on the thickness of the layer, followed by a transition to three-dimensional
turbulence initially produced close to the bottom, no-slip boundary. By switching off the
forcing, we study the decaying turbulent regime and we find that it cannot be described
by an exponential law. Our results show that boundary conditions play a fundamental role
in the nature of turbulence produced in thin layers and give limits on the conditions to
produce a two-dimensional phenomenology.
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I. INTRODUCTION

Many geophysical and astrophysical flows are confined in thin layers of small aspect ratio either
by material boundaries or by physical mechanisms which constrain the motion, such as rotation
or stratification. The vertical extension (thickness) of such layers can be much smaller than the
typical horizontal scales, while being at the same time much larger than the dissipative viscous
scales. As a consequence, turbulent flows in those quasi-two-dimensional geometries display a rich
phenomenology with both three-dimensional (3D) features at small scales and two-dimensional
(2D) properties at large scales.

Remarkably, numerical simulations have shown that a physical confinement is not necessary to
observe a two-dimensional phenomenology. Even fully periodic simulations in a box with large
aspect ratio Lz � Lx = Ly, forced at intermediate scales, produce a split energy cascade in which
a fraction of the energy flow to large scales (as in a pure 2D flow) and the remaining part goes to
small scales producing the 3D direct cascade [1–3]. In this case, the key parameter which controls
the relative flux of energy in the two cascades is the ratio S = Lz/L f between the confining scale
and the characteristic scale of the forcing L f .

The transition from a fully 3D forward cascade to the bidirectional cascade occurs at a critical
value S3D which is not universal and depends on the details of the forcing. Early numerical
simulations with pure 2D forcing [1,2] reported a critical value S3D � 1/2, while recent studies
[4] showed that the threshold S3D decreases as the forcing becomes more three dimensional. In the
limit S → 0 of very small thickness, vertical motion is suppressed by viscosity and the flow fully
recovers the 2D dynamics. Numerical simulations of a model of thin fluid layers [5] showed that
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the transition to the pure 2D regime occurs when the thickness of the box Lz is such that the viscous
damping rate ν/L2

z is of the same order of the shear rate at the forcing scale Uf /L f . This corresponds
to a threshold S2D � √

Re f , where Re f = Uf L f /ν is the forcing Reynolds number. The splitting of
the energy cascade is observed when S2D < S < S3D, and it is associated with a partial conservation
of the enstrophy in the intermediate range of scales L f < � < Lz [6].

The effects of the transition from 3D to partial or complete 2D dynamics are important for several
statistics, including the chaos of the flow [7]. Moreover, since at larger scale the flow becomes more
two dimensional, the inverse cascade of energy in the thin layer proceeds until it reaches the largest
scale and produces a large-scale structure, called the condensate [8–12].

The development of a bidirectional energy cascade with constant fluxes both toward large and
small scales has been observed in a in a variety of contexts, including rotating stratified turbulence
[13–15] and magnetohydrodynamics (MHD) [16,17]. In MHD, the split of the cascade is induced
by the presence of a strong uniform magnetic field. In geophysical flows, the critical thickness for
the split of the energy cascade is increased by the presence of solid-body rotation [18] and reduced
by stable density stratification [19]. We remark that the presence of an inverse cascade and the
formation of large-scale structures has been observed also in the case of turbulent Rayleigh-Benard
convection in horizontally extended domains when the flow is forced by a constant heat flux [20,21]
and independently on the boundary conditions (BC) for the velocity.

The phenomenology of the split energy cascade changes in the presence of confining physical
boundaries, as in the case of laboratory experiments performed in a thin layer of fluid confined by
gravity [22–24]. The bottom (and lateral) boundary of the tank produces a boundary layer which
dissipates a relevant fraction of the energy injected in the system [22,25] and thus reduces the
turbulent flux, in particular in the case of a single layer of fluid [23]. Experiments with a double
layer, in particular of immiscible fluids, reduce the damping rate induced by the bottom wall and
produce an inverse cascade of energy [23,26]. In numerical simulations of turbulent thin layers with
no-slip BC, the development of a viscous boundary layer alters significantly the behavior of the flow
with respect to the case of periodic BC. In particular, in the limit S → 0 of very small thickness,
one expects that the flow is completely suppressed by the viscous friction with the boundary, and
therefore it does not recover the phenomenology of 2D turbulence.

In this work, we systematically study the turbulent flow in a thin layer by extensive direct
numerical simulations of the Navier-Stokes equations in a box with no-slip BC at the bottom, and a
free-slip BC at the top, similarly to laboratory experiments of free-surface turbulence. Simulations
are done at high resolution and large Reynolds numbers which allows the development of a fully 3D
turbulent motion. The forcing scale L f is fixed, and we vary the ratio S by changing the thickness Lz

of the box. We find that, in the range of parameters explored here, the thin layer is unable to sustain
an inverse cascade of energy. We observe a transient inverse cascade, of duration which depends on
the thickness S, but the 3D motion in the bottom boundary layer eventually propagates to the full
layer and the flow becomes fully three dimensional with the inverse cascade being suppressed. We
also study the decaying regime of our systems, and we find a complex behavior which cannot be
described by a simple exponential law.

The remaining of this paper is organized as follows. In Sec. II, we present the details of the
numerical simulations. Section III is devoted to the evolution of the global quantities of the flow,
while Sec. IV discusses small-scale statistics and in particular the presence of a direct or inverse
cascade. In Sec. V, we report the results of the decaying simulations and finally Sec. VI is devoted
to the conclusions.

II. MODELS AND DIRECT NUMERICAL SIMULATIONS

We consider the 3D Navier-Stokes equations for an incompressible velocity field u(x, t ) =
(u, v,w) (with ∇ · u = 0) in a domain of dimension Lx×Ly×Lz

∂u
∂t

+ u · ∇u = −∇p + ν∇2u + f , (1)
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TABLE I. Parameters of the simulations. Nz is the resolution in the z direction, S = Lz/Lf the thickness
in the z direction (in units of the forcing scale Lf ), Lx/Lz is aspect ratio of the computational box, E2D and
Ez are the energies of the horizontal and vertical components of the velocity in the stationary state (the total
energy is E = E2D + Ez). The Reynolds number is defined as Re = √

ELf /ν. For all the runs Lx = Ly = 2π

with a resolution Nx = Ny = 4096. The viscosity is ν = 9.8×10−4 and the random forcing is active on the scale
Lf = Lx/8 with a fixed energy input εI = 50.

Run no. Nz S Lx/Lz E2D Ez Re

1 16 0.03125 256 3.9 0.001 1580
2 32 0.0625 128 7.8 0.07 2250
3 48 0.09375 85.3 9.9 0.22 2550
4 64 0.125 64 11.6 0.41 2780
5 96 0.1875 42.7 12.6 0.68 2920
6 128 0.25 32 13.9 0.96 3100
7 160 0.3125 25.6 12.4 1.1 2940
8 512 1.0 8 12.5 2.1 3060
9 1024 2.0 4 12.5 2.7 3100

where the constant density has been adsorbed into the pressure p and ν is the kinematic viscosity.
The two-dimensional forcing f is restricted to the two horizontal (x, y) components (2D2C)
f (x) = ( fx(x, y), fy(x, y), 0). It is Gaussian, is white in time, and in Fourier space is confined in
a narrow cylindrical shell of wave numbers centered around k f = 2π/L f = 8. One reason to have
a 2D forcing is that it is independent on the thickness of the flow and therefore we use the same
forcing for all the simulations at different Lz. Moreover, thanks to the delta correlation in time, the
rates of injection of energy ε is fixed and does not depend on Lz or on the properties of the flow.

Boundary conditions are periodic in the horizontal direction (x, y) while, to simulate free-surface
turbulence, we impose a no-slip BC at the bottom z = 0 and a free-slip BC at the top z = Lz. We
have therefore u = v = w = 0 at z = 0 while ∂zu = ∂zv = 0 and w = 0 at z = Lz. We remark that
these BC have been previously used for numerical studies of free surface turbulence [27].

The equations of motion are solved numerically on a cubic grid with uniform spacing in
all directions. We use the flow solver FUJIN, an in-house code, extensively validated and used
in a variety of problems [28–33], based on the (second-order) finite-difference method for the
spatial discretization and the (second-order) Adams-Bashforth scheme for time marching. See also
Ref. [34] for a list of validations. Simulations are performed at a fixed horizontal resolution and
varying vertical resolution depending on S with a constant viscosity and energy input (see Table I).
Additional simulations at different viscosities (not discussed here) produced similar results. All
the simulations start from an initial zero-velocity field and reach a statistically stationary states
characterized by a constant energy. Another set of simulations starts from these asymptotic states
and studies the decaying regime by switching off the forcing. We remark that since 〈 fi〉 = 0 [the
average is defined over the (x, y) planes] we have no mean flow 〈ui〉 = 0 and we will consider the
statistics of the fluctuating velocity field only.

III. LARGE-SCALE PROPERTIES OF THE FLOW

The 2D2C random forcing initially produces a two-dimensional flow. Since it cannot transfer
energy on a small scale, energy dissipation during this first phase is negligible and the kinetic
energy grows approximatively as E (t ) � εI t . After this phase, vertical motions start to develop and
eventually produce a three-dimensional turbulence with a transfer of energy to small scales where
it is dissipated. As a consequence, the kinetic energy of the flow reaches a (statistically) stationary
state. This is clearly shown in Fig. 1 where we plot the time evolution of the total kinetic energy
E and of the vertical component Ez for run 6. For t � 0.3, the vertical kinetic energy is negligible
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FIG. 1. Time evolution of the total kinetic energy E (red line) and of the vertical kinetic energy Ez (blue
line) for the forced run 6 at S = 0.25. The black dashed line represents the growth rate due to the energy input,
εI t . Inset: Time evolution of the total kinetic energy E for all the runs. Thickness S (and run number) increases
from bottom (red) to top (black) lines. The black dashed line represents εI t .

and the total energy grows at the input rate. After t � 0.4, vertical motion sets in and the turbulent
transfer to small scales produces a viscous dissipation, which reduces the energy which eventually
reaches a stationary state. We remark that in this stationary state the vertical kinetic energy is still
much smaller than the horizontal one (see Fig. 1 and Table I).

From Fig. 1 we can clearly distinguish two phases in the turbulent flow: a two-dimensional
regime at initial times and a three-dimensional regime at late times. This picture is observed (with
quantitative differences) for all the simulations at different thickness as shown in the inset of Fig. 1.
The fact that kinetic energy reaches a constant value indicates that, for any thickness, the flow is
unable to sustain an inverse cascade (which would keep the energy increasing). The reason why
the energy split scenario (in which both a direct and an inverse energy cascades are present) is not
observed in our simulations is the main result of our work and will be discussed in details below.

From Fig. 1, we observe that the asymptotic value of the energy at long time grows with the
thickness, more rapidly for lower values of S. This is shown more clearly in Fig. 2 together with the
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FIG. 2. Asymptotic kinetic energy E as a function of the thickness S. Inset: ratio Ez/E as a function of S.
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FIG. 3. Vertical profile of the horizontal velocity fluctuations urms. The inset shows the behavior close to
the boundary at z = 0. Colors as in the inset of Fig. 1.

dependence of Ez/E on S in stationary conditions. We see that for S � 0.3 the long-time limit of the
energy has a strong dependence on S, while for larger values of the thickness, E reaches an almost
constant plateau. The inset of Fig. 2 displays the dependence of the ratio Ez/E with the thickness.
In this case, we observe a growth for all the values of S, indicating that the presence of the bottom
boundary affects the vertical motion even at S ≈ 1. We remark that the flow remains anisotropic
also at large S as Ez/E < 1/3.

Since the flow has no mean velocity, 〈u〉 = 0, it is natural to consider the vertical profiles of
the rms velocities, i.e., urms(z) = 〈u(x)2〉1/2, where the average is over the horizontal (x, y) planes.
The different boundary conditions on the horizontal (u, v) and vertical w components, together
with the 2D forcing, produce different profiles for the horizontal and vertical components.

Figure 3 shows the vertical profiles of one component of the horizontal velocity urms in stationary
conditions. We observe, close to z = 0, a boundary layer region, strongly affected by the presence
of the bottom wall, where velocity fluctuations increase rapidly with z. For larger values of z
(and not too small S) horizontal velocity fluctuations saturates to an approximately constant value
which increases with S. In these cases, we observe that close to the upper boundary z = Lz, the
horizontal velocity fluctuations increase. This is a consequence of the free-slip boundary conditions
and has been already observed in free-surface channel flow [27,35]. A possible explanation of
this effect is obtained from a Taylor expansion of the velocity field close to the surface z = Lz.
Introducing, for simplicity of notation, the shifted variable Z = Lz − z (such that the free surface
is at Z = 0), boundary conditions imply for one horizontal component of the velocity u(x) =
u0(x, y) + u2(x, y)Z2 + O(Z4). Therefore, the variance of the velocity close to the surface has the
expression

〈u2〉 = 〈
u2

0

〉 + 2〈u0u2〉Z2 + O(Z4). (2)

Assuming that the energy dissipation rate averaged over horizontal planes is independent on z
(which is verified in our simulation for values of z not too close to the bottom plane), we expect
that 〈ε〉 = −aν〈u∇2u〉 > 0, where the positive constant a depends on the details of the flow (a = 3
for isotropic turbulence). By Taylor expansion, we can write

u∇2u � (u0 + u2Z2)
(
∂2

x + ∂2
y + ∂2

Z

)
(u0 + u2Z2). (3)

Averaging (3) over (x, y) and using integration by part on the x and y derivatives, we obtain at the
leading order

〈u∇2u〉 = −〈(∂xu)2〉 − 〈(∂yu)2〉 + 2〈u0u2〉 + O(Z2) � −ε/ν < 0. (4)
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FIG. 4. Vertical profile of the vertical velocity fluctuations wrms. Colors as in the inset of Fig. 1.

This expression suggests that, in the absence of cancellations of leading terms, 〈u0u2〉 ∝ −ε/ν < 0
and therefore, from (2), that 〈u2〉 deceases moving away from the free surface as observed in Fig. 3.
A parabolic fit of the velocity variance close to z = Lz is quantitatively consistent with the above
predictions. Close to the bottom boundary with no-slip BC, we observe that the extension of the
boundary layer region is weakly dependent on S, as it is shown in the inset of Fig. 3.

Vertical profiles of the vertical velocity fluctuations are shown in Fig. 4. At variance with the
horizontal components, here the velocity (and therefore its fluctuations) vanishes also at the upper
free surface. The maximum value of fluctuations is observed approximately in the middle of the
domain, even if, due to the different boundary conditions, the profiles are not symmetric with respect
the central plane z = Lz/2. The ratio of the lines plotted in Figs. 4 and 3 gives the profile of the
anisotropy of the velocity field. Even for the largest values of S, we have that in the central part of
the domain wrms/urms � 0.5.

IV. SMALL-SCALE STATISTICS AND TRANSIENT INVERSE CASCADE

As discussed in the previous section, the 2D2C forcing produces initially a two-dimensional flow.
This flow is nonstationary, as shown in Fig. 1, and eventually develops instabilities which result in
a three-dimensional motion. In order to better understand and characterize this transition, we study
the small-scale statistics of the turbulent flow at different times and horizontal planes. We consider
here the run at S = 2 for which the results are more clear, but a similar scenario is observed for the
simulations at other thicknesses also.

Figure 5 shows the horizontal spectra [computed on the (x, y) plane] of the full velocity field
in two different depths z and at different times. Both at z = Lz/4 and at z � Lz (i.e., close to the
lower and upper boundaries respectively) the flow initially (at t = 0.2) develops fluctuations at small
scales (i.e., at k > k f = 8) with a steep spectrum compatible with a 2D direct cascade of enstrophy.
During this first stage, in which the energy increases approximately with the energy injection
(see Fig. 1), the flow transfers some energy at large scale as prescribed by a two-dimensional
phenomenology. At t = 0.4 the flow close to the bottom has already developed a Kolmogorov
scaling k−5/3, compatible with a 3D direct cascade, while the spectrum of the flow close to the
surface is still steep (second line from bottom in both plots). At later times t � 0.6, spectra display
a Kolmogorov scaling in both planes.

The interpretation of these results is that two-dimensional turbulence, which is initially produced
by the 2D2C forcing, is transient and the flow develops a three-dimensional direct cascade starting
from the layers closer to the bottom boundary. In this sense, the transition from 2D to 3D flow is not
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FIG. 5. 2D energy spectra for the simulation at S = 2 computed at z = Lz/4 (left) and z � Lz (right) at
different times, from t = 0.2 (light red) to time t = 1.2 (black) with steps �t = 0.2. The dashed line represents
the Kolmogorov spectrum k−5/3.

uniform in space, but proceeds from the bottom layer toward the top layer. This is clearly shown in
Fig. 6, where we plot the energy spectra computed on different horizontal planes in the domain at
the intermediate time t = 0.4. It is clear that while the upper layers (at z � Lz) have a steep spectra
compatible with a direct 2D cascade, the lower layers close to the bottom have already developed a
3D cascade with a Kolmogorov spectrum.

To improve our understanding of the transition, we computed the two-dimensional energy flux
�(k) on the (x, y) planes at different depth z. By definition, �(k) represents the energy flux due to
the nonlinear terms. It is positive (negative) in the presence of a direct (inverse) energy cascade to
small (large) scales. For a fully two-dimensional flow, �(k) vanishes at large k because of energy
conservation [and also �(0) = 0 since there is no flux from or to k < 0].

The energy flux for the simulations at S = 2 at two different times and two planes is shown in
Fig. 6. At short time t = 0.3 the flow in the upper plane z/Lz = 3/4 displays a clear inverse cascade
with a negative flux for wave numbers k � kI = 8. At the lower layer z/Lz = 1/4 we observe a split
of the energy flux with about half of the energy transferred to small scales and half to large scales. At
late time t = 1.2 the inverse cascade is suppressed and all the energy is transferred to small scales.
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FIG. 6. (Left) 2D energy spectra from the simulation at S = 2 at time t = 0.4 computed at different planes
from z = Lz/8 (clear red) to z � Lz (black). The dashed line represents the Kolmogorov spectrum k−5/3. (Right)
Two-dimensional energy fluxes on the (x, y) planes z/Lx = 3/4 (continuous lines) and z/Lz = 1/4 (dash-dotted
lines) at t = 0.3 (red lines) and t = 1.2 (blue lines).
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the simulation, t = 0.2 (red lines), t = 0.4 (blues lines), and t = 0.6 (green lines). Continuous lines correspond
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We remark that since the energy is in principle not conserved on the (x, y) planes, the fluxes do not
vanishes at large k.

The transition from 2D to 3D dynamics at different layers is confirmed by the analysis of structure
functions (SF) in physical space, in particular by the third-order SF which contains information
about the flux of energy [36].

From the longitudinal velocity increments δuL(�, x, t ) ≡ (u(x + �, t ) − u(x, t )) · �/�, where � is
a vector on the (x, y) plane, we define the SF of order p as

Sp(�; z) = 〈
δup

L(�, x, t )
〉

(5)

where, as in Sec. I, the average is over the plane (x, y) and time. We remark that three-dimensional
turbulence is characterized by a negative third-order SF corresponding to a direct cascade of
turbulent fluctuations to small scales. In particular, in 3D homogeneous-isotropic turbulence one has
S3(�) = −(4/5)ε� [37]. In two dimensions, one has, on the contrary, an inverse cascade of turbulent
fluctuations at scales larger than L f with a positive third-order SF given, in homogeneous-isotropic
conditions, by S3(�) = (3/2)ε� [36].

In Fig. 7, we plot the horizontal third-order longitudinal velocity SF at three different times and
at three different depths corresponding to z/Lz = 1/4, 1/2, 3/4. At short time, t = 0.2 the SF is
positive, corresponding to an inverse energy cascade, at all the three depths considered, consistent
with the spectrum shown in Fig. 4. At the intermediate time t = 0.4 (which still corresponds to
the growing phase of the total energy, see inset of Fig. 1), the SF in the upper layer (continuous
line) is still positive, while it becomes negative in the lower layer close to the bottom boundary
(dash-dotted line). At the intermediate layer, the SF changes sign with the scale and at large scales
is still positive. This confirms the picture in Fourier space observed in Fig. 6. At time t = 0.6,
which corresponds to the peak of the kinetic energy in Fig. 1, the SFs become negative for all the
depth considered, indicating a complete transition to 3D turbulence in the whole domain. This is at
variance to what is observed in simulations in fully periodic domains where, for intermediate values
of S, it is observed an inverse cascade at large scales together with a direct cascade at small scales,
both in stationary conditions [2]. Remarkably, laboratory experiments in a conducting fluid show a
similar phenomenology with the transition from positive to negative third-order SF [38].

The physical interpretation of these results, which are qualitatively confirmed also for the other
simulations at smaller S, is that the 2D2C forcing initially produces a quasi-two-dimensional flow,
which is turbulent [positive S3(�)] in the whole domain. As the energy increases, the friction on the
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z ).

bottom boundary induces vertical motions which make the flow three-dimensional [negative S3(�)]
starting from the lower layers. Eventually, at longer times, the whole flow becomes three dimen-
sional, turbulent fluctuations are dissipated by viscosity, and the kinetic energy decreases to reach a
stationary state.

V. DECAYING TURBULENCE

In order to better understand the effects of the bottom layer on the turbulent flow, we performed
additional simulations in decaying conditions, i.e., by integrating (1) without the forcing term f .
The initial conditions for the decaying simulations are taken from the forced runs in stationary
conditions, i.e., from the last time of the inset of Fig. 1.

The evolution of the energy [normalized with the initial energy E (0)] is shown in Fig. 8 (where
the initial time t = 0 is now the time at which the forcing is switched off). From a qualitative point
of view, it is evident that the decay is faster for thinner layers, indicating the importance of the
bottom boundary for the dissipation of energy. Nonetheless, we see that energy dissipation rate
becomes almost independent in the case of thick layers (the lines for S = 0.125 and S = 0.3125 are
practically identical).

The lin-log plot of Fig. 8 suggests that, while in the thinnest case S = 0.03125 the long-time
decay is with good approximation exponential, which is not the case for the simulations at larger
values of S. This is quantitatively confirmed by the inset of Fig. 8, where we plot the local
rate of exponential decay for three cases. The rate 2λ is obtained by plotting the local slope of
log(E (t )/E (0)) vs time, while the dashed lines represent the theoretical viscous decaying rate of a
2D flow with friction, given by λ = νπ2/(4L2

z ) [22]. It is clear that while the flow at S = 0.03125,
after a short transient, reaches the exponential decay with the predicted viscous rate, the other cases
with larger S display a more complex decay law which cannot be simply described by an exponential
law and a corresponding friction coefficient λ. We remark that in these cases the energy decay cannot
even be described by a scale invariant, power-law scaling. A complex decaying law in quasi-2D
experiments has been recently reported and interpreted as different stages of exponential decay with
different decaying constant [39]. The results shown in the inset of Fig. 8 indicate that in our case
it is difficult to recognize even a transient, exponential regime and that the interplay of 2D and 3D
motion produces a complex decaying phenomenology.
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VI. CONCLUSIONS

We studied the dynamics and statistics of turbulence in a thin layer with no-slip BC on the
bottom surface, forced by a 2D2C forcing. For the range of thickness explored, we find that the
flow is unable to sustain an inverse energy cascade: After a initial transient, the flow develops a
three-dimensional direct cascade which starts from the bottom and eventually propagates in the
whole domain. The analysis of the energy spectrum, the energy flux, and the third-order structure
function shows that at intermediate times, 2D-like and 3D phenomenologies can coexist at different
depths in the flow. This is in contrast to what is observed in homogeneous simulations in the absence
of boundaries where the the flow can sustain simultaneously an inverse cascade of energy to large
scales and a direct cascade to small scales [2]. Moreover, our results are also at odds with several
laboratory experiments where an inverse cascade is observed [23,24,26,40,41], but mostly in the
presence of two layers of fluids (miscible or not). The differences in these cases are probably due to
the fact that the dynamics in the upper layer (where the flow is studied) is partially decoupled from
the lower layer which is affected by the no-slip boundary conditions.

Finally, we studied the decaying behavior of the thin turbulent layer. Also in this case, we find
differences with respect to laboratory experiments where the decay of kinetic energy is exponential
and therefore it is parameterized by a single friction coefficient [22]. We observe a clear exponential
decay only for the simulation with the thinnest layer, while in the other cases a more complex decay
law is observed. The different behavior in this case can be not only ascribed to the presence of
stratification, but also to the different initial flow conditions between experiments and simulations.

In this work, we have changed only one parameter of the flow (the thickness S), while there
are other variables which can produce a different phenomenology, mainly the viscosity (i.e., the
Reynolds number), the forcing statistics [4], and the presence of a background rotation and/or
stratification. Further work is therefore needed to uncover the reach phenomenology of turbulent
thin layers.
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