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Three-dimensional miscible Rayleigh–Taylor �RT� turbulence at small Atwood number and at
Prandtl number one is investigated by means of high resolution direct numerical simulations of the
Boussinesq equations. RT turbulence is a paradigmatic time-dependent turbulent system in which
the integral scale grows in time following the evolution of the mixing region. In order to fully
characterize the statistical properties of the flow, both temporal and spatial behaviors of relevant
statistical indicators have been analyzed. Scaling of both global quantities �e.g., Rayleigh, Nusselt,
and Reynolds numbers� and scale dependent observables built in terms of velocity and temperature
fluctuations are considered. We extend the mean-field analysis for velocity and temperature
fluctuations to take into account intermittency, both in time and space domains. We show that the
resulting scaling exponents are compatible with that of the classical Navier–Stokes turbulence
advecting a passive scalar at comparable Reynolds number. Our results support the scenario of
universality of turbulence with respect to both the injection mechanism and the geometry of the
flow. © 2010 American Institute of Physics. �doi:10.1063/1.3371712�

I. INTRODUCTION

The Rayleigh–Taylor �RT� instability is a well-known
fluid-mixing mechanism originating at the interface between
light fluids accelerated into a heavy fluid. It was first de-
scribed by Rayleigh1 for incompressible fluid under gravity
and later generalized to all accelerated fluid by Taylor.2

RT instability plays a crucial role in many fields of sci-
ence and technology. In particular, in gravitational fusion it
has been recognized as the dominant acceleration mechanism
for thermonuclear reactions in type-Ia supernovae.3,4 The ef-
ficiency of inertial confinement fusion depends dramatically
on the ability to suppress RT instability on the interface be-
tween the fuel and the pusher shell.5,6

In a late stage, RT instability develops into the so-called
RT turbulence in which a layer of mixed fluid grows in time,
increasing the kinetic energy of the flow at the expenses of
the potential energy. This process finds applications in many
fields, e.g., atmospheric and oceanic buoyancy driven mix-
ing. Despite the great importance and long history of RT
turbulence, a consistent phenomenological theory has been
proposed only recently.7 In three dimensions, this theory pre-
dicts a Kolmogorov-like scenario, with a quasistationary en-
ergy cascade in the mixing layer. The prediction is based on
the Kolmogorov–Obukhov picture of turbulence in which
density fluctuations are transported passively in the cascade
and kinetic-energy flux is scale independent.8 Quasistation-
arity is a consequence of the Kolmogorov scaling of charac-
teristic times associated to turbulent eddies: Large scales
grow driven from potential energy, while small-scale struc-
tures, fed by the turbulent cascade, follow adiabatically
large-scale growth. These theoretical predictions have been

partially confirmed by recent numerical studies.3,9–11 Other
alternative phenomenological approaches �see, e.g., Ref. 12�
does not necessarily lead to the Kolmogorov scaling for the
energy spectra.

In this paper we carry out an analysis of the scaling
behavior of relevant observables with the aim of deepening
our previous investigation.11 Indeed, our aim is to make a
careful investigation of the time evolution of global observ-
ables and of spatial/temporal scaling and intermittency.
Moreover we push the analogy of RT turbulence with the
usual Navier–Stokes �NS� turbulence much further. We show
that small-scale velocity and temperature fluctuations de-
velop intermittent distributions with structure function scal-
ing exponents consistent with NS turbulence advecting a
passive scalar.

This paper is organized as follows. In Sec. II we formu-
late the problem and outline the phenomenology. After pro-
viding a description of the numerical setup in Sec. III, we
describe our results in Secs. IV and V. Section IV is devoted
to the investigation of the temporal evolution of global quan-
tities. In Sec. V we focus on the statistics at small scales.
Finally, the conclusions are provided by summarizing the
main results.

II. EQUATION OF MOTION AND PHENOMENOLOGY

We consider the three-dimensional �3D� Boussinesq
equations for an incompressible velocity field �� ·v=0�,

�tv + v · �v = − �p + � � v − �gT , �1�
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�tT + v · �T = ��T , �2�

with T�x , t� being the temperature field, proportional to the
density via the thermal expansion coefficient � as �=�0

��1−��T−T0�� ��0 and T0 are reference values�, � is the
kinematic viscosity, � is the molecular diffusivity, and
g= �0,0 ,−g� is the gravitational acceleration.

At time t=0 the system is at rest with cooler �heavier,
density �2� fluid placed above the hotter �lighter, density �1�
one. This corresponds to v�x ,0�= �0,0 ,0� and to a step
function for the initial temperature profile: T�x ,0�
=−��0 /2�sgn�z�, where �0 is the temperature jump which
fixes the Atwood number A= ��2−�1� / ��2+�2�= �1 /2���0.
The development of the instability leads to a mixing zone of
width h that starts from the plane z=0 and is dimensionally
expected to grow in time according to h�t�=�Agt2 �where �
is a dimensionless constant to be determined�, which implies
the relation vrms�Agt for typical velocity fluctuations �root
mean square velocity� inside the mixing zone.

The convective state is characterized by the turbulent
heat flux and energy transfer as a function of mean tempera-
ture gradient. In terms of dimensionless variables, these
quantities are represented respectively by the Nusselt number
Nu=1+ �wT�h / ���0� �w being the vertical velocity� and the
Reynolds number Re=vrmsh /� as a function of the Rayleigh
number Ra=�g�0h3 / ���� and the Prandtl number Pr=� /�.
Here and in the following �¯ � denotes spatial average inside
the turbulent mixing zone, while the overbar indicates the
average over horizontal planes at fixed z.

One of the most important problems in thermal convec-
tion is to find the functional relation between the convective
state characterized by Nu and Re and the parameter space
defined by Ra and Pr.13 The existence of an asymptotic re-
gime at high Ra, with a simple power law dependence
Nu�Ra	 and Re�Ra
, is still controversial in the case of
the Rayleigh–Bénard convection, despite the number of ex-
periments at very large Ra. Most of the experiments have
reported an exponent 	�0.3 �Refs. 14 and 15� of a more
complex behavior16,17 partially described by a phenomeno-
logical theory.18 However, many years ago, Kraichnan19 pre-
dicted an asymptotic exponent 	=1 /2 �with logarithmic cor-
rections� associated to the now called “ultimate state of
thermal convection,” while exponents 	�1 /2 are excluded
by a rigorous upper bound Nu� �1 /6�Ra1/2−1.20 The ulti-
mate state regime is expected to hold when thermal and ki-
netic boundary layers become irrelevant, and indeed has

been observed in numerical simulations of thermal convec-
tion at moderate Ra when boundaries are removed,21 while
no indication of ultimate state regime has been observed in
Rayleigh–Bénard experiments.14

The ultimate state exponent is formally derived from ki-
netic energy and temperature balance equations.18 In the
present context of RT turbulence they can more easily be
obtained from the temporal scaling of h and vrms. Assuming
that �wT��vrms�0, using the above definitions one estimates,

Ra � �Ag�4t6/����, Re � �Ag�2t3/�, and

�3�
Nu � �Ag�2t3/� ,

from which

Nu � Pr1/2Ra1/2 and Re � Pr−1/2Ra1/2. �4�

For what concerns the small-scale statistics inside the
mixing zone, the phenomenological theory7 predicts for the
3D case an adiabatic Kolmogorov–Obukhov scenario with a
time-dependent kinetic-energy flux 
�vrms

3 /h���g�0�2t.
Spatial-temporal scaling of velocity and temperature fluctua-
tions is therefore expected to follow

�rv�t� � 
1/3r1/3 � ��g�0�2/3t1/3r1/3, �5�

�rT�t� � 
−1/6
T
1/2r1/3 � �0

2/3��g�−1/3t−2/3r1/3, �6�

where �rv�t�=v�x+r , t�−v�x , t� is the velocity increment on
a separation r �similarly for temperature� and 
T��0

2t−1 is the
temperature-variance flux. We remark that the above scaling
is consistent with the assumption of the theory that tempera-
ture fluctuations are passively transported at small scales
�indeed using Eqs. �5� and �6�, the buoyancy term �gT be-
comes subleading in Eq. �1� at small scales�. This is the main
difference with respect to the two-dimensional �2D� case in
which temperature fluctuations force the turbulent flow at all
scales.4,7,22

III. NUMERICAL SETTING

The Boussinesq equations �1� and �2� are integrated by a
standard 2/3-dealiased pseudospectral method on a 3D
periodic domain of square basis Lx=Ly and aspect ratio
Lx /Lz=R with uniform grid spacing at different resolutions,
as shown in Table I. In the following, all physical quantities
are made dimensionless using the vertical scale Lz, the tem-
perature jump �0, and the characteristic time �= �Lz /Ag�1/2 as
fundamental units.

Time evolution is obtained by a second-order Runge–
Kutta scheme with explicit linear part. In all the runs,
�g=2.0 and Pr=� /�=1. Viscosity is sufficiently large to
resolve small scales �kmax��1.2 at final time, being
�=�3/4
−1/4 the Kolmogorov scale and kmax=Nx /3�.

RT instability is seeded by perturbing the initial condi-
tion with respect to the unstable step profile. Two different
perturbations were implemented in order to check the inde-
pendence of the turbulent state from initial conditions. In the
first case the interface T=0 at z=0 is perturbed by a super-
position of 2D waves of small amplitude h0=0.004Lz in an
isotropic range of wavenumbers 32�k�64 �with k2=kx

2

TABLE I. Parameters of the simulations: Nx, Ny, and Nz spatial resolutions,

� viscosity, � thermal diffusivity, and R�=vrms
2 	15 / ��
� Reynolds number

evaluated at the end of the simulation. All dimensional quantities are
made dimensionless using the vertical box size Lz, the characteristic time
�= �Lz /Ag�1/2, and the temperature jump �0 as reference units.

Label Nx=Ny Nz

�=�
��10−6� R�

A 256 1024 9.5 103

B 512 2048 4.8 196

C 1024 1024 3.2 122
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+ky
2� and random phases.23 For the second set of simulations,

we perturbed the initial condition by adding 10% of white
noise to the value of T�x ,0� in a layer of width h0 around
z=0. Figure 1 shows a snapshot of the temperature field in a
cubic slice around z=0 in the turbulent regime at time
t=2� for simulation B �see Table I�.

IV. EVOLUTION OF GLOBAL QUANTITIES

Figure 2 displays the evolution of the total kinetic energy
E=
�1 /2�v�x�2dx and total kinetic-energy dissipation 
L as a
function of time. After the linear instability regime, at t��
the turbulent regime sets in with algebraic time dependence.
Temporal evolution of the two quantities are easily obtained
recalling that, being global quantities, an additional geo-
metrical factor h�t�� t2 due to the integration over the verti-
cal direction has to be included. Therefore the predictions are

E�t��vrms
2 h� t4 and 
L�
h� t3, as indeed observed at late

times. We also plot in Fig. 2 the total potential-energy loss,
defined as P�0�− P�t� with P�t�=−�g
zT�x�dx, which has
the same temporal scaling of E�t� as it is obvious from en-
ergy balance: d�E+ P� /dt=−
L. Notice that for this nonsta-
tionary turbulence the energy balance does not fix the
ratio between the energy growth rate dE /dt and the energy
dissipation �and flux� 
L. In the turbulent regime, our
simulations show an “equipartition” between large-scale en-
ergy growth and small-scale energy dissipation: dE /dt�
L

�−�1 /2�dP /dt. This amounts to saying that half of the
power injected into the flow contributes to the growth of the
large-scale flow, and half feeds the turbulent cascade �see
inset of Fig. 2�. This result was found to be independent on
the value of viscosity �the only adjustable parameter in the
system� and is consistent with previous findings.24

An interesting remark is that RT turbulence represents an
instance of the general case of a turbulent flow adiabatically
evolving under a time-dependent energy input density I�t�,
which forces the flow at the integral scale L�t� �concerning
the problem of turbulent flow characterized by a time-
dependent forcing, see, for example, Refs. 25 and 26 and
references therein�. Energy balance requires dE /dt=I�t�
−
�t�, where E is the kinetic-energy density. Assuming a
Kolmogorov spectrum for velocity fluctuations at scales
smaller than the integral scale, one estimates E�t��
2/3L2/3.
Therefore, in situations characterized by an algebraic growth
of the energy input density I�t�� t
 a self-similar evolution
of the energy spectrum can be obtained only if 
�t�� t
 and
L�t�� t�3+
�/2. This is indeed realized in RT turbulence, where

=1 and 
� t , L�t�� t2.

In the inset of Fig. 3 the growth of vertical and horizon-
tal rms velocity �wrms and urms, respectively�, computed
within the mixing layer, is shown. Both urms and wrms grow
linearly in time, as expected, with the vertical velocity about
twice the horizontal one, reflecting the anisotropy of the
forcing due to gravity. It is interesting to observe that aniso-
tropy decays at small scales, where almost complete isotropy
is recovered, as shown in Fig. 3. The ratio of vertical to
horizontal rms velocity reaches a value of wrms /urms�1.8 at

FIG. 1. �Color online� Snapshot of temperature field for the RT simulation
at t=2�. White �black� regions correspond to hot �cold� fluid. Parameters in
Table I, run B.
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later times �corresponding to R��200� while for the gradi-
ents we have ��zw�rms / ��xu�rms�1.0.

The evolution of the mean temperature profile T̄�z , t�
�1 / �LxLy�
T�x , t�dxdy is shown in Fig. 4. As observed in
previous simulations10,11,22,27 the mean profile is approxi-
mately linear within the mixing layer �where therefore the
system recovers statistical homogeneity�. Nevertheless, sta-
tistical fluctuations of temperature in the mixing layer are
relatively strong: At later time we find a flat profile of fluc-
tuations. Moreover their distribution is close to a Gaussian
with a standard deviation �T�z��0.25�0 �not shown here�.

In Fig. 4 we also plot the profile of the heat flux wT�z , t�
and the square vertical velocity w2�z , t�. Both vanish outside
the mixing layer and inside show a similar shape not far from
a parabola. Of course, the time behaviors of the heat flux and
of the square vertical velocity amplitude are different. In-
deed, the former is expected to grow as �t and the latter
as �t2.

The mean temperature profile defines the width of the
mixing layer. Different definitions of the mixing width, h,
have been proposed on the basis of integral quantities or
threshold values �see Ref. 28 for a discussion of the different
methods�. In the following we will use the simple definition

based on a threshold value: T̄��h /2�=s�0 /2, where s�1
represents the threshold.

The evolution of the mixing width for s=0.8 is shown in
Fig. 5. After an initial stage �t�0.3�� in which the perturba-
tion relaxes toward the most unstable direction, we observe a
short exponential growth corresponding to the linear RT in-
stability. At later times �t�0.6�� the similarity regime sets in
and the dimensional t2 law is observed. The naive compen-
sation with Agt2 gives an asymptotic constant value of
h / �Agt2��0.036 for t�3� and Re�104 �at which the
mixing width is still below half box�. For the calculation of
�, more sophisticated analysis have been proposed
recently3,29,30 using slightly different approaches �briefly, in
Ref. 29 a similarity assumption and in Ref. 30 a mass flux
and energy balance argument�. In both cases, the authors
derive for the evolution of h�t� the equation

ḣ2 = 4�Agh , �7�

which has solution h�t�=�Agt2+2��Ah0�1/2t+h0, where
h0 is the initial width introduced by the perturbation.

�= ḣ2 / �4Agh�. The idea is to get rid of the subleading terms
and extract the t2 contribution at early time by using directly

Eq. �7� and evaluating �= ḣ2 / �4Agh�.
The growth of the mixing layer width h�t�, a geometrical

quantity, is accompanied by the growth of the integral scale
L�t�, a dynamical quantity representing the typical size of
the large-scale turbulent eddies. Following Ref. 9 we define
L as the half width of the velocity correlation function
f�L�= �vi�r�vi�r+L�� / �v2�=1 /2. In the turbulent regime the
integral scale and the mixing length are linearly related �see
Fig. 6�. A linear fit gives L /h�1 /17 and L /h�1 /42 for the
integral scale based on the vertical and horizontal velocity
components, respectively, in agreement with the results
shown in Ref. 9 �of course, the precise values of the coeffi-
cients depend on the definition of h�. The anisotropy of the
large-scale flow is reflected in the velocity correlation length:
The integral scale based on horizontal velocity is smaller
than the one based on vertical velocity.

We end this section by discussing the behavior of the
turbulent heat flux, the energy transfer, and the mean tem-
perature gradient in terms of dimensionless variables �as dis-
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cussed in Sec II�: Nusselt, Reynolds, and Rayleigh numbers,
respectively. The temporal evolution of these numbers,
shown in Fig. 7, follows the dimensional prediction �3� for
the temporal evolution of � �see the inset in Fig. 5�. The
presence of the ultimate state of thermal convection, in the
restricted case Pr=1, is also confirmed by our numerical re-
sults. Data obtained from simulations at various resolutions
�see Fig. 8� are in close agreement with the “ultimate state”
scaling �4�.

V. SMALL-SCALE STATISTICS

As already discussed in Sec. I, the phenomenological
theory predicts that at small scales, RT turbulence realizes an
adiabatically evolving Kolmogorov–Obukhov scenario of
NS turbulence. Here adiabatic means that because of the
scaling laws, small scales have sufficient time to adapt to the
variations of large scales, leading to a scale-independent en-
ergy flux. We remark that this is not the only possibility, as in
two dimensions the phenomenology is substantially differ-
ent. Unlike the 3D configuration, the 2D scenario is an ex-
ample of active scalar problem. Indeed, the buoyancy effect
is leading at both large and smaller scales. An adiabatic gen-
eralization of Bolgiano–Obukhov scaling has been predicted
by means of mean-field theory7 and has been confirmed
numerically.22

Figure 9 shows the global energy flux in spectral space
at different times in the turbulent stage of the simulation. As
discussed above, the flux grows in time following the in-
crease in the input I�t� at large scales and at smaller ones,
faster scales have time to adjust their intensities to generate a
scale-independent flux.

If the analogy with NS turbulence is taken seriously, one
can extend the dimensional predictions �5� and �6� to include
intermittency effects. Structure functions for velocity and
temperature fluctuations are therefore expected to follow

Sp�r,t� � ���rv��t��p� � vrms�t�p
 r

h�t�
��p

, �8�

Sp
T�r,t� � ���r��t��p� � �0

p
 r

h�t�
��p

T

. �9�

In Eq. �8� we introduce the longitudinal velocity differences
�rv��t���v�x+r , t�−v�x , t�� ·r /r and the increment r is made
dimensionless with a characteristic large scale which, in the
present setup, is proportional to the width of the mixing layer
h�t�, the only scale present in the system. The two sets of
scaling exponents �p and �p

T are known from both
experiments31,32 and numerical simulations33 with good ac-
curacy for moderate p. Mean-field prediction is �p=�p

T= p /3
while intermittency leads to a deviation with respect to this
linear behavior. Kolmogorov’s “4/5” law for third-order ve-
locity implies the exact result �3=1, while temperature expo-
nents are not fixed, apart for standard inequality
requirements.8 Both experiments and simulations give stron-
ger intermittency in temperature than in velocity fluctuations,
i.e., �p

T��p for large p.
We have computed velocity and temperature structure

functions and spectra in our simulations of RT turbulence. To
overcome the inhomogeneity of the setup, velocity and tem-
perature differences �at fixed time� are taken between points
both belonging to the mixing layer as defined above. Isot-
ropy is recovered by averaging the separation r over all di-
rections. Spectra are computed by the Fourier-transforming
velocity and temperature fields on 2D horizontal planes and
then averaging vertically over the mixing layer.
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A. Lower-order statistics

In Fig. 10�a�, we plot kinetic-energy spectra at different
times in the turbulent stage, compensated with the time-
dependent energy dissipation 
2/3�t�. In the intermediate
range of wavenumbers, corresponding to inertial scales, the
collapse is almost perfect. The evolution of the compensated
spectra shows that the growth of the integral scale at small
wavenumbers is in agreement with Fig. 6. Likewise
temperature-variance spectra are considered in Fig. 10�b�.
Here, the spectra are compensated with both the time-
dependent temperature-variance dissipation 
T

−1�t� and the
energy dissipation 
1/3�t�. The evolution of the intermediate
range of wavenumbers follows the dimensional prediction
�6�.

Figure 11 displays the third-order velocity structure
function S3�r�, related to the energy flux by Kolmogorov’s
4/5 law S3�r�=−�4 /5�
r.8 We also plot the mixed velocity-
temperature structure function S1,2�r����rv���rT�2�, which is
proportional to the �constant� flux of temperature fluctuations

T according to Yaglom’s law S1,2�r�=−�4 /3�
Tr.34 Both the
computed structure functions display a range of linear
scaling, i.e., a constant flux, in the inertial range of scales
5�10−3�r /Lz�5�10−2. It is interesting to observe that the
mixed structure function S1,2�r� seems to have a range of
scaling which extends to larger scales. This is probably due

to the fact that at large-scale temperature fluctuations are
dominated by unmixed plumes which have strong correla-
tions with vertical velocity.

B. Spatial/temporal intermittency

Despite the clear scaling observable in Fig. 11, it is very
difficult to compute scaling exponents directly from higher-
order structure functions because of limited Reynolds num-
ber and statistics. Therefore, assuming a scaling region as in
Fig. 11, we can compute relative scaling exponents using the
so-called extended self-similarity �ESS� procedure.35 This
corresponds to consider the scaling of one structure function
with respect to a reference one �e.g., S3�r� for velocity sta-
tistics�, and thus to measure a relative exponent �i.e., �p /�3�.

Scaling exponents obtained in this way are shown in Fig.
12. Reference exponents for the ESS procedure are �3=1 and
�2

T=2 /3 �which is not an exact result�. We see that both ve-
locity and temperature scaling exponents deviate from the
dimensional prediction of Eqs. �5� and �6� �i.e., �p=�p

T= p /3�
indicating intermittency in the inertial range. We also ob-
serve a stronger deviation for temperature exponents, which
is consistent with what is known for the statistics of a passive
scalar advected by a turbulent flow.8,36

The question regarding the universality of the set of scal-
ing exponents with respect to the geometry and the large-
scale forcing naturally arises. Several experimental and nu-
merical investigations in 3D turbulence support the
universality scenario in which the set of velocity and passive
scalar scaling exponents are independent of the details of
large-scale energy injection and geometry of the flow. There-
fore, because we have seen that in 3D RT turbulence at small
scales temperature becomes passively transported and isot-
ropy is recovered, one is tempted to compare scaling expo-
nents with those obtained in NS turbulence. As shown in Fig.
12, the two sets of exponents coincide, within the error bars,
with the exponents obtained from a standard NS simulation
with passive scalar at comparable R�.33
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FIG. 10. �Color online� �a� Kinetic-energy spectra compensated with 
2/3 at
times t=1� �crosses�, t=1.4� �times�, t=1.8� �stars�, and t=3.8� �squares�.
Inset: kinetic-energy dissipation vs time. The line represents the linear grow-
ing of energy dissipation �see Sec. II�. �b� Temperature-variance spectra
compensated with 
T

−1
1/3 at same times. Inset: temperature-variance dissi-
pation vs time. The line is the dimensional prediction �t−1 �see Sec. II�.
Data from simulation B.

10-5

10-4

10-3

10-3 10-2

-S
3(

r)
,-

S
1,

2(
r)

r

FIG. 11. �Color online� Third-order isotropic longitudinal velocity structure
function S3�r� computed at a late stage in the simulation �circles� and mixed
longitudinal velocity-temperature structure function S1,2�r� �triangles�. The
black line represents the linear scaling. Data from simulation B.
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We remark that scaling exponents for passive scalar in
NS turbulence are very sensitive to the fitting procedure.
Strong temporal fluctuations have been observed in single
realization37 and dependence on the fitting region has been
reported.33 Indeed, different realizations of RT turbulence
�starting with slightly different initial perturbations� lead to
fluctuations of scaling exponents which account for the error
bars shown in Fig. 12.

Figure 12 also shows probability density functions for
velocity and temperature fluctuations for two different scales.
Both distributions are close to a Gaussian at large scale and
develop wide tails at small scales, indicating the absence of
self-similarity thus confirming the intermittency scenario.

As a further numerical support of Eqs. �8� and �9� we
now consider temporal behavior of structure functions. From
Eq. �8�, taking into account the temporal evolution of large-
scale quantities, we expect the temporal scaling Sp�t�� t�p

with �p= p−2�p. With the Kolmogorov scaling one simply
has �p= p /3 but intermittent corrections are expected to be
important, for example, �6�2.4 instead of p /3=2. Figure 13
shows the scaling of Sp�r , t� versus S2�r , t� �i.e., in the ESS
framework� for a particular value of r=r0=0.0012Lz. The
relative temporal exponents �p /�2 obtained from the spatial
exponents �p of Fig. 12 fit well the data, while nonintermit-
tent relative scaling exponents �p /�2= p /2 are ruled out.

The effects of intermittency are particularly important at
very small scales. One important example is the statistics of
acceleration which has recently been the object of experi-
mental and numerical investigations.38,39 For completeness,
we briefly recall the main results obtained in those studies.

The acceleration a of a Lagrangian particle transported
by the turbulent flow is by definition given by the right hand
side of Eq. �1�. In the present case of the Boussinesq ap-
proximation, the acceleration has three contributions: pres-
sure gradient, viscous dissipation, and buoyancy terms. Ne-
glecting intermittency for the moment, dimensional scalings
�5� and �6�, implies that −�p���u��−1/4��g�0�3/2t3/4

while �gT��g�0. Therefore the buoyancy term in Eq. �1�
becomes subleading not only going to small scales but also
at later times. Among the other two terms, we find that as in
standard NS turbulence, the pressure gradient term is by far

the dominant one, as shown in the inset of Fig. 14. After an
initial transient, we have that for t�2� both terms grow with
a constant ratio ��zp�rms / ���w�rms�8.

The inset of Fig. 14 suggests that the temporal growth of
arms is faster than t3/4. Again, this can be understood as an
effect of intermittency which is particularly important at
small scales. Indeed, using the multifractal model of
intermittency8 one obtains the prediction arms� t0.86.39

The effect of intermittency on acceleration statistics is
evident by looking at the probability density function �pdf�.
Figure 14 shows that the distribution develops larger tails as
turbulence intensity, and Reynolds number, increases. This
effect is indeed expected, as the shape of the acceleration pdf
depends on the Reynolds number and therefore no universal
form is reached. Nevertheless, given the value of R� as a
parameter, the pdf can be predicted again using the multi-
fractal model.39

VI. CONCLUSION

We have studied spatial and temporal statistics of RT
turbulence in three dimensions at small Atwood number and
at Prandtl number one on the basis of a set of high resolution
numerical simulations. RT turbulence is a paradigmatic ex-
ample of nonstationary turbulence with a time-dependent in-
jection scale. The phenomenological theory proposed by
Chertkov7 is based on the notion of adiabaticity where small
scales are slaved to large ones: The latter are forced by con-
version of potential energy into kinetic energy and the former
undergo a turbulence cascade flowing to smaller scales until
molecular viscosity becomes important. In this picture, tem-
perature actively forces hydrodynamic degrees of freedom at
large scales while it behaves like a passive scalar field at
small scales where a constant kinetic-energy flux develops.

The above scenario suggests comparison of RT turbu-
lence with classical homogeneous, isotropic, and stationary
NS turbulence, in the general framework of the existence of
universality classes in turbulence.

By means of accurate direct numerical simulations, we
provide numerical evidence in favor of the mean-field theory.
Moreover, we extend the analysis to higher-order statistics
thus addressing the issue related to intermittency corrections.
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By measuring scaling exponents of both velocity and tem-
perature structure functions, we find that indeed they are
compatible with those obtained in standard turbulence. This
result gives further support for the universality scenario.

We also investigate temporal evolution of global quanti-
ties, both geometrical �the width of mixing layer� and dy-
namical �the heat flux�. The relevant dimensionless quantities
in RT turbulence are the Rayleigh, Reynolds, and Nusselt
numbers for which there exists an old prediction due to
Kraichnan,19 known as the ultimate state of thermal convec-
tion, which links the dimensionless number in terms of
simple scaling laws. Our set of numerical simulations give
again strong evidence for the validity of such scaling in RT
turbulence at small Atwood number and at Prandtl number
one thus confirming how important in thermal convection is
the role of boundaries, which prevent the emergence of the
ultimate state.
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