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Large-scale effects on meso-scale modeling for scalar transport
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Abstract

The transport of scalar quantities passively advected by velocity fields with a component at small scale ` can be modeled at scales larger than
` by means of an effective drift and an effective diffusivity, which can be determined by means of multiple-scale techniques. We show that the
presence of a weak flow at large scales L � ` induces interesting effects on the scalar transport at the meso-scales (i.e. at scales intermediate
between ` and L). In particular, it gives rise to non-isotropic and non-homogeneous corrections to the meso-scale drift and diffusivity. We discuss
an approximation that allows us to retain the second-order effects caused by the large-scale flow. This provides a rather accurate meso-scale
modeling for both asymptotic and pre-asymptotic scalar transport properties. Numerical simulations in model flows are used to illustrate the
importance of such large-scale effects.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Scalar transport; Transport modeling; Multiple-scale analysis
1. Introduction

Diverse scientific disciplines cope with systems character-
ized by interactions across a large range of physically signif-
icant length scales. This is for instance the case of earthquake
dynamics [1,2]), biological and soft matter sciences [3]). A sim-
ilar situation can be found in the framework of atmospheric
or ocean sciences. Focusing on tracer dispersion, advection by
geophysical flows results in the rapid generation of fine-scale
tracer structures. This is true even though, e.g. in the atmo-
sphere, the wind field is typically dominated by large-scale fea-
tures, such as synoptic scale weather systems. Coarse-grained
representations of atmospheric winds can indeed generate fine-
scale tracer filaments, through the chaotic advection process
(see e.g. Ref. [4]).
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A common and long-standing problem linking all these sci-
entific disciplines is to build a coarse-grained description start-
ing from the microscopic model. The challenge is thus to reduce
the typically huge number of degrees of freedom by modeling
the fastest and smallest scales. In this way one may construct
a computationally tractable effective equation, which involves
only the scales one is interested in [5,6].

Our aim here is to shed some light on this very general
problem in the specific framework of tracer dispersion. In
this context, the scales of interest are generally larger than
the diffusive length scale. The problem of developing coarse-
grained models, closed on the large scales, is also known as the
“parametrization problem” [7]. For general advecting velocity
fields, the parametrization problem is not tractable by means of
systematic approaches able to deduce the form of the closure
starting from the original, full-scale, equations.

An important exception occurs in the presence of scale
separation between the advecting velocity and the tracer
i.e., when the former is concentrated at small scales and
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one looks at the tracer dynamics on scales much larger than
those of the velocity. In this limit the goal is to derive the
expression of the asymptotic diffusion coefficient renormalized
by the presence of the small-scale velocity field. This can be
accomplished exploiting asymptotic methods (see, e.g., [6,8–
14] among others). However, in many physical circumstances
one has that the velocity field may be thought as a small-
scale (fast evolving) advecting velocity field (at scale `)
superimposed on a large-scale, slowly varying component
(at scale L � `). A physical example of this situation is
represented by the dispersion of a pollutant that, released in the
atmospheric boundary layer (having characteristic time scales
of the order of minutes), is observed at synoptic scales (i.e. over
weeks or more). Scale separation is guaranteed by the fact that
meso-scale structures (in the range between weeks and minutes)
turn out to be much less energetic than the other active scales. In
order terms the energy spectrum is characterized by having two
well-separated peaks at scales of order of minutes and weeks
(see e.g. Ref. [15]).

In this case two levels of coarse-grained description are of
interest. As in the previous case one would like to understand
the asymptotic diffusive regime at scales much larger than L .
On the other hand, one is also interested in deriving meso-scale
models for the (pre-asymptotic) transport of a tracer in the range
of scales between ` and L . The latter issue has been recently
addressed in Refs. [16,17]. In particular, explicit expressions
for the effective (meso-scale) diffusivity and velocity have been
obtained in the limit of strong large-scale flows [17]. This
investigation pointed out the important fact that the (meso-
scale) diffusivity does depend on the large-scale advecting
velocity, as well as (of course) on the small scales.

Our main aim here is to quantitatively understand whether
or not the opposite limit (i.e. a large-scale advective component
which is weaker than the small-scale advection) leads to explicit
expressions for the effective parameters which functionally
depend on the large-scale advecting velocity.

As we shall see, a class of eddy-diffusivity fields will
emerge from a perturbative approach through which both the
asymptotic and the pre-asymptotic transport properties can be
successfully described when the effects of the large scales
are properly taken into account. In particular, by means of
numerical simulations of model flows we show that the meso-
scale transport model is able not only to recover the asymptotic
properties but also to predict the pre-asymptotic regime. The
latter issue is conceptually connected with the problem of
predicting the evolution of a many degrees of freedom system
through a model in which not all the degrees of freedom
are resolved. In the atmospheric community this problem is
known as the predictability problem of the second kind [18,
19], in contrast to that of the first kind in which the model
representing the system is assumed to be known exactly and
the unpredictability comes from our imperfect knowledge of
the initial conditions.

For the sake of simplicity our analysis will be restricted
to two-dimensional flows. It should be noted that working in
two dimensions is still relevant to many applications, e.g., to
investigate the time-varying transport and mixing properties of
isoentropic flows in the atmosphere (see e.g. Ref. [20]) and in
the ocean in connection with horizontal geostrophic eddies (see
e.g. Ref. [21]).

The material is organized as follows. In Section 2 the
general framework for the multiple-scale analysis for a passive
tracer in the presence of a slowly varying advective velocity
superimposed to a small-scale component is described, and the
limit of weak large-scale advection is explicitly considered. In
Section 3 eddy diffusivities are computed in two commonly
considered model flows. In Section 4, the meso-scale model
is compared with direct numerical simulations of the original
transport problem both for the asymptotic and pre-asymptotic
properties. Conclusions and perspectives are reserved to
Section 5. The Appendices present some technical material.

2. Multiple-scale analysis

We consider the evolution of a passive scalar field, θ(x, t),
in an incompressible velocity field v:

∂tθ(x, t)+ (v · ∂)θ(x, t) = D0∂i∂iθ(x, t), (1)

where D0 is the molecular diffusivity. Following Refs. [16,
17], we focus on situations where v can be thought as the
superposition of a “large-scale” velocity field U(x, t) and a
“small-scale” component u(x, t) which are assumed both to
vary on length scales of order O(L) and O(`), respectively,
and to have amplitude ratio |U|/|u| ≡ ε, with ε not necessarily
of O(1). Scale separation between the two fields is measured
by the small parameter ε = `/L . In the limit ε → 0, multiple-
scale analysis provides a description for modeling the dynamics
of the scalar field at meso-scale, i.e. at scales larger than `
and of the same order of L , in which the dynamical effects
of the smallest scales appear via a renormalized (enhanced)
diffusivity [16,17].

Following the multiple-scale approach we introduce a set of
slow variables X = εx, T = ε2t and τ = εεt in addition to
the fast variables (x, t). The scaling of the times T and τ are
suggested by physical reasons: we are searching for diffusive
behavior on large time scales of O(ε−2) taking into account
the effects played by the advection contribution occurring on
time scales of O(ε−1). According to the prescription of the
method, the two sets of variables are treated as independent.
It then follows that

∂i 7→ ∂i + ε∇i , ∂t 7→ ∂t + εε∂τ + ε2∂T , (2)

u 7→ u(x, t), U 7→ U(X, T ), (3)

where ∂ and ∇ denote the derivatives with respect to fast
and slow space variables, respectively. Notice that when ε

goes to zero the problem is consistently mapped into the
homogenization performed in [11].

The passive scalar field is expanded as a perturbative series

θ(x, t; X, T ; τ) = θ (0) + εθ (1) + ε2θ (2) + O(ε3). (4)

By inserting Eqs. (2) and (4) into Eq. (1) and equating terms
with equal powers in ε one obtains a hierarchy of equations. By
imposing the resolvability conditions on the first two orders in
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ε one derives a Fokker–Planck equation for the “large-scale”
scalar field defined as θL ≡ 〈θ (0)〉 + ε〈θ (1)〉 (see Ref. [16] for a
detailed derivation).

The eddy-diffusivity tensor of this “coarse-grained”
Fokker–Planck equation is given by

Di j (X, T ) = δi j D0 − 〈uiχ j 〉 (5)

where brackets indicates spatial and temporal averages over the
fast variables x and t (the technique can be extended with some
modifications to handle the case of a random, homogeneous and
stationary velocity field [6]) and χ(x, t; X, T ) is an auxiliary
field with vanishing average over the periodicities which is
ruled by the equation

∂tχ j + [(u + U) · ∂]χ j − D0 ∂
2χ j = −u j . (6)

The meso-scale transport equation for the “large-scale” scalar
field θL reads

∂tθL + (U · ∂)θL = ∂i
(
Di j∂ jθL

)
(7)

where, for the sake of notation simplicity, the usual variables
t and x have been restored (see Appendix A for details on the
derivation of the above equation). We remind that Eq. (7) is the
Fokker–Planck equation corresponding (in the Ito convention)
to the Lagrangian description

dxi

dt
= U E

i + Bi jη j (8)

where U E
i = Ui + ∂ j Di j is the effective meso-scale velocity,

Bik B jk = Di j + D j i and ηi ’s are zero-mean Gaussian variables
with 〈ηi (t)η j (t ′)〉 = δi jδ(t − t ′).

It is worth noticing that the multiple-scale approach reduces
the calculation of eddy diffusivities and meso-scale velocities
to the solution of the auxiliary Eq. (6). In generic flows, when
U is not a constant mean flow but depends on X and T , the
equation must be solved for each value of U. This can be
rather demanding in terms of computer resources if numerical
methods are required to solve such an equation. Therefore,
except for a few cases, in which analytic solutions of Eq. (6)
are available (e.g. in the case of orthogonal shears [16], this
approach does not provide a practical tool for evaluating the
eddy diffusivity.

2.1. Weak large-scale flow asymptotics

The natural way to overcome the problem of finding
solutions of Eq. (6) for arbitrary values of the large-scale flow
is to try to find explicit, even if approximate, expressions for
the eddy diffusivities. In this section we show that this program
can be fulfilled in a perturbative limit. To be more specific, here
we consider situations in which the intensity of the large-scale
flow is weak compared to the small-scale one (the opposite limit
was considered in Ref. [17]). In this case it is possible to find
the solution of Eq. (6) as a perturbative expansion in the small
parameter ε = U/u:

χ(x, t; X, T ) = χ (0) + εχ (1) + ε2χ (2) + · · · . (9)
Consistently, from Eq. (5) the eddy diffusivity can be written as

Di j (X, T ) = D0δi j − 〈uiχ
(0)
j 〉 − ε〈uiχ

(1)
j 〉 − ε2

〈uiχ
(2)
j 〉

+ O(ε3). (10)

Defining the O(1) field, U′
= U/ε, plugging Eq. (9) into

Eq. (6) and equating terms with equal powers in ε, one obtains
the following hierarchy of equations:

∂tχ
(0)

+ (u · ∂)χ (0) − D0∂
2χ (0) = −u, (11)

∂tχ
(1)

+ (u · ∂)χ (1) − D0∂
2χ (1) = −(U′

· ∂)χ (0), (12)

· · · · · ·

∂tχ
(n)

+ (u · ∂)χ (n) − D0∂
2χ (n) = −(U′

· ∂)χ (n−1). (13)

The zeroth-order solution does not depend on the large-scale
variables, and can be formally written as:

χ
(0)
i (x, t) = −

∫
G(x − x′, t − t ′)ui (x′, t ′) dx′ dt ′, (14)

where G(x, t) is the Green function associated to the linear
differential operator of the Fokker–Planck equation:

LF P G(x, t) =

{
∂t + (u · ∂)− D0∂

2
}

G(x, t) = δ(x, t). (15)

In the same way the n-th order solution can be written as

χ
(n)
i (x, t; X, T ) = −

∑
j

U ′

j (X, T )
∫

G(x − x′, t − t ′)

× ∂ jχ
(n−1)
i (x′, t ′; X, T ) dx′ dt ′. (16)

Let us notice that all the odd terms of the expansion in Eq. (10)
must vanish by symmetry: due to the recursive nature of Eq.
(16) they correspond to polynomial correction of odd order in
U to the eddy diffusivity, which would depend on the sign of U.

Plugging Eqs. (14) and (16) into Eq. (10) we can finally
write the following polynomial expansion in U for the eddy
diffusivity:

Di j (X, T ) = DS
i j +

∑
lm

UlUmΓ lm
i j + O(ε4) (17)

where we denoted with DS
i j the eddy diffusivity originating

from the small-scale velocity field when the large-scale one is
neglected, i.e.:

DS
i j = D0δi j − 〈uiχ

(0)
j 〉. (18)

It is important to note that the coefficients

Γ lm
i j = 〈ui G ∗ (∂l(G ∗ (∂m(G ∗ u j ))))〉 (19)

(where ∗ denotes the convolution integral) are determined only
by the small-scale flow characteristics. We remark that this
approach is relevant also when direct (analytical or numerical)
computation of these coefficients is not possible. In those
latter cases, we can still assume the form (17) where now the
coefficients Γ can be determined, e.g., by data-fit.

It is worth recalling that the expression (17) for the eddy
diffusivity is a perturbative expansion in two different small
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parameters: ε = `/L (which measures the scale separation
between the two components of the flow), and ε = U/u (which
measures the ratio of their intensity). The first expansion is
the basis of the multiple-scale approach. The second allows
us to disentangle the dependence on the large-scale flow in the
eddy diffusivity, since it provides recursive expressions for the
auxiliary fields χ (n) as polynomial expansion in U.

In order to illustrate how Eq. (17) can be used to retain the
effects induced by the large-scale flow on the eddy diffusivity
in meso-scale modeling, let us concentrate on the first non-
vanishing correction, i.e. the second-order one in ε = U/u:
δD(2)

i j (X, T ) = −ε2
〈uiχ

(2)
j 〉. For the sake of simplicity, we

consider the case of a two-dimensional flow in the case where
u is statistically isotropic. Without loss of generality one can
choose the x ′

1 axis parallel to U ≡ (U1,U2). In this coordinate
system

δD(2)
i ′ j ′(X, T ) = U 2(X, T )〈ui ′ G ∗ (∂1′(G ∗ (∂1′(G ∗ u j ′))))〉

(20)

where U 2
= U 2

1 +U 2
2 . The off-diagonal terms δD(2)

1′2′(X, T ) and

δD(2)
2′1′(X, T ) vanish by isotropy. The correction to DS

i j is then
diagonal in the reference frame with axis X ′

1 ‖ U and X ′

2 ⊥ U.
Finally we can write

Di j (X, T ) = DS
i j + δD(2)

i j (X, T )+ O(ε4), (21)

where

δD(2)
i j (X, T ) = U 2(X, T )R(φ)

(
α 0
0 β

)
RT(φ), (22)

with

R(φ) =
1
U

(
U1 −U2
U2 U1

)
(23)

being the rotation matrix and φ the angle between U and x1.
Therefore the effects induced by the large-scale flow on the
eddy diffusivity, up to the second order, can be obtained in
terms of two parameters only. These are determined solely by
the small-scale features:

α = 〈u‖G ∗ (∂‖(G ∗ (∂‖(G ∗ u‖))))〉, (24)

β = 〈u⊥G ∗ (∂‖(G ∗ (∂‖(G ∗ u⊥))))〉. (25)

In the general three-dimensional case the transverse correction
β pertains to the plane perpendicular to the direction of the
large-scale flow.

3. Computation of the eddy diffusivity in model flows

Let us now discuss the approximation previously obtained
in two model flows. As representative examples of two broad
classes of realistic instances we focus here on two large-scale
flows: case (a) a steady shear, the Kolmogorov flow [22]

U = (U sin(K y), 0) (26)

and case (b) a large-scale cellular flow [6,23,11]

U = (U sin(K x) cos(K y),−U cos(K x) sin(K y)), (27)
where L = 2π/K is their characteristic length scale. The two
above fields correspond to two typical situations: the shear flow
strongly enhances the large-scale diffusion coefficient (in the
shear direction), while the cellular flow (due to trapping) is
characterized by a weaker enhancement of the diffusivity.

Concerning the small-scale velocity component we consider
a small scale replica of the cellular flow (27), i.e.:

u = (u sin(kx) cos(ky),−u cos(kx) sin(ky)), (28)

with characteristic length scale given by ` = 2π/k and
amplitude u. In the absence of large-scale velocity fields
(i.e. U = 0) and for high Peclet numbers (Pe = u`/D0),
it is possible to show [24,25] that this periodic array of
small vortexes give rise to an enhanced effective (small-scale)
diffusivity DS

∼ D0
√

Pe. A precise estimation of DS , which
is indeed in good agreement with the above expression, can be
obtained by the numerical solution of Eq. (6), with U = 0.
In particular, one finds an isotropic eddy diffusivity induced
by the small-scale cellular flow DS

i j = DSδi j . The numerical
technique used to solve Eq. (6) (and all successive PDEs)
is based on a standard implementation of a fully de-aliased
pseudospectral algorithm on a bi-periodic square lattice of
size L = 2π with 5122 collocation points. Time integration
is performed by standard second-order Runge–Kutta scheme.
Time steps are always of the order of 1/10 of the smallest
advecting time.

Let us now discuss the effect on the eddy diffusivity tensor
induced by a weak large scale flow.

In order to estimate the second-order correction and to assess
the limits of validity of truncating the perturbative expansion at
second order in ε = U/u, we proceeded as follows.

Rather than evaluating the coefficients α and β directly
exploiting Eqs. (24) and (25) (which appear quite difficult)
we proceed as follows. First, we compute Di j by solving
numerically the full auxiliary equation (6) for a small-scale
cellular flow u(x, t) given by Eq. (28). Second, we repeat the
computation with a constant mean flow U = (U, 0) [this is
possible because the dependence on X and T can be treated
parametrically]. Note that the choice of the direction of U
is immaterial, provided that the small-scale flow is isotropic.
Finally, by dividing for U 2 the eigenvalues of Di j − DS

i j =

δD(2)
i j + O(ε4) (see Eq. (21), one obtains the coefficients α

and β in the limit of vanishing ε. The validity of the second-
order approximations for Di j is thus reduced to check the
independence of α and β on ε (see Fig. 1).

However, notice that the small-scale cellular flow is not
exactly isotropic. Therefore α and β are expected to display
a weak dependence on the direction of the large-scale flow. To
test this angular dependence, we repeated the measurements of
α and β keeping fixed the ratio ε = U/u (within the interval
of validity of the second order approximation) and varying the
angle φ between the direction of U and the x-axis of the small-
scale cellular flow. As one can see in Fig. 2(a), the angular
dependence is confirmed to be very weak. For the present
analysis, the small-scale cellular flow can be thus considered
almost isotropic. We also measured the angular discrepancy
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Fig. 1. α (solid line) and β (dashed line) computed as a function of the ratio
ε = U/u. Simulations have been performed with a small-scale cellular flow
(28) with u = 1 and k = 8 (i.e. ` = π/4), the molecular diffusivity is
D0 = 10−3 (corresponding to Pe = 785) and U = (U, 0), with U constant.
Qualitatively similar results have been obtained for other sets of parameters.

Fig. 2. (a) The coefficients α and β as a function of angle φ that defines
the direction of the large-scale velocity field. (b) Angular discrepancy ψ

between the direction of the large-scale flow and the eigen-direction of
the eddy diffusivity tensor. Here the large-scale flow is chosen as U =

U (cos(φ), sin(φ)), where U is fixed as U = 0.01u. The other parameters are
as in Fig. 1.

between the direction of U and the eigen-directions of δD(2)
i j

as a function of φ (see Fig. 2(b)). Also in this case the angular
dependence is indeed rather small. Therefore, in the following
we shall ignore it and substitute α(φ) and β(φ) with their
angular averages.

Once the correction to the small-scale diffusivity tensor
have been parametrized through the two coefficients α and β,
one can reconstruct the spatial structure of the effective eddy
diffusivity for a generic large-scale flow, within the second-
order approximation by using Eq. (22).

In Fig. 3 we show the eddy-diffusivity Di j (y) resulting
from the small-scale cellular flow (28) superimposed to a
large-scale shear (26). We compare the numerical solution
of Eq. (6), Di j (y), for all the accessible values of y,
i.e. those corresponding to the grid points, with its second-order
approximation for ε = 0.1.

As one can see in Fig. 3, though we are at the border of
the validity interval of the perturbation theory (see Fig. 1),
the second-order approximation recovers quite well the exact
Fig. 3. The eddy diffusivity Di i (y) normalized with the small-scale diffusivity
DS

ii . The second-order approximation (dashed line) for Dxx (y) (above 1) and
Dyy(y) (below 1) is in almost perfect agreement with the exact multiple-scale
solution (solid line). Data refer to the case of a small-scale cellular flow (28)
superimposed to a large-scale shear (26), with parameter values U = 0.1,
L = 2π , u = 1, ` = L/8, and D0 = 10−3. The scale separation is ε = 1/8
(see text for a discussion about this point).

multiple-scale solution, both in the parallel and perpendicular
direction with respect to the large-scale shear. It should
be remarked that the improvement brought by the second-
order approximation with respect to the zeroth-order one (the
constant dotted line in Fig. 3) is impressive.

It is worth noticing that the corrections induced by the large
scale are not only non-homogeneous but also non-isotropic.
In particular, the diffusion is enhanced in the longitudinal
direction (being α > 0) while it is decreased in the transverse
direction (β < 0). As we shall see in the next section this
anisotropy is crucial to recover the pre-asymptotic features of
scalar transport.

4. Asymptotic and non-asymptotic scalar transport

Up to now the discussion has been essentially focused on the
formalism and the methods to obtain the effective meso-scale
description. It is now natural to wonder about the practical use
of this approach. First, to test the consistency of the approach,
we check whether the model recovers the asymptotic behavior
of the scalar field at very large scales L � L and very long
times T � T . Then we shall show to what extent Eq. (7) is
a good model for the meso-scale transport, i.e. in the interval
` � r ≤ L . In particular, we shall show that, only properly
taking into account the effects of the large-scale flow on the
diffusivity tensor (i.e. at the second order Eq. (17)), the meso-
scale evolution of the scalar field can be correctly predicted.

4.1. Macro-dynamics of scalar transport

As is well known (see Ref. [6] for a review on the subject), in
the asymptotics of large scales and long times, scalar dynamics
reduce to an effective diffusion equation :

∂T θL = DL
i j ∇i∇ jθL, (29)

where θL is the scalar field averaged over volumes of size
L . Following the strategy devised in Ref. [17] (see also
Appendix B), we notice that the very large scale diffusivity
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Table 1
Asymptotic eddy diffusivity resulting from the small-scale cellular flow (28) (u = 1.0, ` = π/4) and large-scale (S) shear (26) or (C) cellular flow (27) (U = 0.1,
L = 2π ). In all cases we used molecular diffusivity D0 = 10−3

Type `/L U/u DL,ex DL,M2 DL,M0

S 1
8 0.1 Dxx = 0.486 0.520 0.429

Dyy = 9.53 × 10−3 8.64 × 10−3 1.20 × 10−2

C 1
8 0.1 Dxx = Dyy = 3.25 × 10−2 3.05 × 10−2 3.74 × 10−2
Fig. 4. Time evolution of the asymptotic eddy diffusivity, computed via Eqs.
(B.1) and (B.3), up to convergence to its constant value (non-dimensional units).
The velocity field is given by the superimposition of large-scale cellular flows
(27) and a small-scale one (27), with parameter values U = 0.1, L = 2π ,
u = 1, ` = L/8, and D0 = 10−3. The time evolution of the asymptotic eddy
diffusivity DL (solid line) is well approximated by meso-scale modeling (7) in
which the second-order correction induced by the large-scale flow are retained
(dashed line), while the zeroth-order approximation (dotted line) does not
match the actual value. Time is normalized with the large-scale advecting time
scale T = L/U .

tensor DL
i j can be obtained in two ways. The first is the

implementation of the multiple-scale analysis directly to Eq.
(1), where the whole velocity v = u + U is assumed to vary
on scales of O(1/ε′) and the dynamics is observed at scales L
of order O(1). On the other hand one may proceed by using
two successive homogenization steps. This is also known as the
“reiterated homogenization” technique [8]. In the first step of
reiterated homogenization one wipes out the small-scale details
of the velocity field, thus obtaining Eq. (7). The second step
consists of applying the multiple-scale technique to the meso-
scale equation (7).

Both procedures lead to an effective diffusive equation (29)
but with two (a priori) different eddy-diffusivity tensors. Such
a difference is due to the fact that in first procedure scale
separation between u and U is assumed to be of O(1/ε), with ε
not necessarily small and independent of ε′. In the reiterated
homogenization approach, ε must be related to ε′. The two
approaches coincide for the particular choice ε′ = ε [8].

In order to test whether the meso-scale model based on the
perturbative expansion (17) is able to recover the asymptotic
behavior of the scalar field, we compare the exact value DL,ex

obtained by a direct homogenization of Eq. (1), with the
approximations DL,M0 and DL,M2. These latter are obtained
by a homogenization of meso-scale model (7) where the zeroth-
order approximation D(M0)

i j = DS
i j and the second-order
approximation D(M2)
i j = DS

i j + δD(2)
i j are used for the eddy

diffusivity (see Eq. (22)).
Results are summarized in Fig. 4, where we show the

time evolution of the asymptotic eddy diffusivity up to its
convergence to a constant value in the case of the large-
scale cellular flow (27). Notice that by using the second-
order approximation one obtains a 6% discrepancy from the
exact value with respect to a 15% value for the zeroth-order
approximation. In Table 1 one may directly compare the
different approximations for the case of large-scale cellular and
shear flow.

In all the investigated cases taking into account the effect of
the large scales, even if at the lowest nontrivial order (i.e. the
second one) allows for an improvement of at least a factor 2
in the relative error. Though not astonishing this goes in the
correct direction and confirms the consistency of the approach.
We conclude by noticing that here we are comparing “global”
quantities while we expect a better performance of the meso-
scale model for local properties at the intermediate scales, for
which the model itself has been developed for.

4.2. Meso-scale dynamics of scalar transport

In many applications the asymptotic properties are less
important than the meso-scale ones. For instance, let us
consider an initially localized concentration field (as, e.g., a
pollutant released in a given region). More than being interested
in the time scales necessary for it to distribute uniformly
in the whole domain, one is interested in predicting the
spatial patterns and evolution of the pollutant concentration at
intermediate time and scales (this is dramatically important if,
e.g., the pollutant is a toxic substance).

In this perspective it is interesting to see if the model (7)
has a “predictive” character for the scalar dynamics at these
intermediate scales and finite times. In order to test such a
possibility we devised the following strategy. We consider a
scalar concentration initially localized at small scales. Then we
follow its evolution in a square domain with periodic boundary
conditions according to:

(i) the exact dynamics of the scalar field θ(T ) given by Eq. (1);

(ii) the model dynamics given by Eq. (7) with Di j = D(M0)
i j =

DS
i j ; in the following this is called the θ(M0) field;

(iii) the model dynamics given by Eq. (7) with the refined
approximation for the diffusivity tensor Di j = D(M2)

i j =

DS
i j + δD(2)

i j (see Eq. (22)), in the following we denote as
θ(M2) the resulting field.
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Fig. 5. (a) Temporal decay of the fluctuations, σ 2
(T ) (bold line), σ 2

(M0) (dotted line) and σ 2
(M2) (dashed line), in a large scale shear and a small-scale cellular flow.

The inset shows the normalized error E(M0)(t) (dotted line) and E(M2)(t) (dashed line). (b) The same for the case of large-scale and small-scale cellular flows.
Parameters as in Table 1. Time is normalized with the large-scale advecting time scale T = L/U .
Finally the fields evolving with the three above dynamics
are compared. The comparison is done at different levels. We
looked both at the evolution of local and global quantities. In
particular, we compare the evolution of the variance of the three
fields, i.e.

σ 2
(α)(t) = 〈θ2

(α)(x, t)〉 − 〈θ(α)(x, t)〉2, α = T,M0,M2, (30)

where the average is performed over the spatial domain. The
behavior of σ 2

(α)(t) describes the mean decay of the scalar
fluctuations due to the joint effects of molecular dissipation
and advection. Natural indicators to characterize the degree of
spatial “similarity” between the different fields are:

E(M0)(t) = 〈(θ(T )(x, t)− θ(M0)(x, t))2〉/σ 2
(T )(t)

E(M2)(t) = 〈(θ(T )(x, t)− θ(M2)(x, t))2〉/σ 2
(T )(t).

(31)

With the normalization by σ 2
(T )(t), E(M0)(t) and E(M0)(t)

provide a measure of the relative distance between true and
model fields. It is worth noticing that, since θ(M0) and θ(M2)
models the “true” evolution only at scales larger than `, in
principle one should measure the errors (31) after filtering out
these small scales from θ(T ). Here, to avoid the arbitrariness
of the choice of filtering procedure, we did use the unfiltered
field θ(T ). This introduces an additional error caused by the fast-
decorrelating small-scale features, which nevertheless becomes
negligible as soon as the concentrations θ(α) spread over scales
significantly larger than `.

On the numerical side, the three fields are identically
initialized as Gaussian distributions with width ∼O(`) and
centered in the same point of the domain. The robustness of
the results we are going to present has been tested by repeating
the computation with different initial locations. In the following
we present the results for both the large-scale shear (26) and
cellular flow (27).

In Fig. 5(a),(b) we show the time evolution of the above
defined indicators. As one can see after a short transient the
second-order meso-scale modeling recovers the actual decay
rate, while the zeroth-order approximation does not. Moreover,
as evidenced in the insets, the relative errors between the
true evolving field and its two models M0 and M2 are such
that, while the zeroth-order approximation rapidly goes toward
100% error, the second-order one remains below 15% during
the whole evolution.

The improvement brought by the second-order corrections
is even more striking if one looks directly at the snapshots of
the concentration fields (Figs. 6 and 7). As one can see the
spatial patterns of the M0 approximation rapidly decorrelate
with those of the true field, that are actually well described by
the M2 approximation. We remark that crucial for the fidelity
of the second-order approximation is that the corrections to the
small-scale diffusivity tensor retains relevant information of the
anisotropic and inhomogeneous diffusive behavior induced by
the presence of the large-scale flow, namely the enhancement of
diffusion in the direction on U and its reduction in the transverse
direction. This is particularly evident in the case of large-scale
shear shown in Fig. 6, where one can see that the blob M0
spreads too quickly in the y-direction and too slowly in the
x-direction with respect to the true field. On the other hand,
since D(M2)

xx > D(M0)
xx and D(M2)

yy < D(M0)
yy these features

are captured by the M2 approximation. This is even clearer
in Fig. 7, where one can see that, differently from the M2
model, the trapping of the concentration in the large-scale cells
is completely missed in the M0 approximation.

5. Conclusions

We have studied both analytically and numerically the
effects of a weak advecting velocity field at large scale on the
meso-scale modeling for the transport of passive scalars. By
means of multiple-scale methods we perturbatively computed
the dependence of (pre-asymptotic) eddy-diffusion tensor Di j
on the large-scale velocity field. The corrections to D are
non-homogeneous and non-isotropic. In particular we find
an enhancement (reduction) in the longitudinal (transversal)
direction of the large-scale field. The perturbative approach
proposed here allows us to develop meso-scale models retaining
(at least at second-order accuracy) these effects, which are
shown to be crucial to properly describe the transport dynamics.
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Fig. 6. Snapshots of θ(M0) (left column), θ(T ) (middle column), and θ(M2) (right column) at three different times, from top to bottom t ≈ 0.5, 1.0, 1.5T where
T = L/U is the large-scale advection time. The large-scale velocity field is the shear flow (26). At t = 0 θα’s were initialized as a Gaussian centered in
(9/16L , 7/16L) with a width 2σ ≈ `. Simulation parameters are summarized in Table 1.
We conclude by noticing that the new findings obtained by
our approach seem very promising for future applications to
the numerical investigation of large-scale transport (asymptotic
and pre-asymptotic) both in the atmosphere and in the ocean.
Indeed the present results together with those obtained in
Ref. [17] cover two opposite limits of transport for which
explicit expressions for the effective parameters are available.
By interpolation, one may hope to obtain the form of these
effective coefficients under general conditions.
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Appendix A. The multi-scale approach in the presence of
large-scale velocity fields

For the sake of completeness, following Ref. [16] we report
in this appendix the details to obtain Eq. (7) for the large-scale
scalar field θL . The starting point is the advection–diffusion
equation

∂tθ(x, t)+ (v · ∂) θ(x, t) = D0∂i∂iθ(x, t) (A.1)

where the advecting velocity v(x, t) is incompressible and given
by the sum of u(x, t) and U(x, t). The first is periodic both
in space (in a cell of size l) and in time (the technique can
be extended with some modifications to handle the case of a
random, homogeneous and stationary velocity field [6]). The
second is the large-scale component of v, which varies only on
a typical scale L such that l/L = ε << 1, where ε is the
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Fig. 7. The same as in Fig. 6 for the case of large-scale cellular flow. Simulation parameters are summarized in Table 1.
parameter controlling the scale separation. The amplitude ratio
between U and u is ε ≡ |U|/|u|.

We are interested in the dynamics of the field θ(x, t) on large
scales of order O(1/ε).

In the spirit of multi-scale methods (see Ref. [8]), in addition
to the fast variables x and t , let us then introduce slow variables
such as X = εx, T = ε2t and τ = εεt . The prescription of the
technique is to treat the variables as independent. It follows that

∂i 7→ ∂i + ε∇i ; ∂t 7→ ∂t + εε∂τ + ε2∂T , (A.2)

u 7→ u(x, t); U 7→ U(X, T ) (A.3)

where ∂ and ∇ denote the derivatives with respect to fast and
slow space variables, respectively. The solution is sought as a
perturbative series

θ(x, t; X, T ; τ) = θ (0) + εθ (1) + ε2θ (2) + · · · , (A.4)
where the functions θ (n) depend a priori on both fast and
slow variables. By inserting (A.4) and (A.2) into (A.1) and
equating terms having equal powers in ε, we obtain a hierarchy
of equations. The solutions of interest to us are those having the
same periodicities as the velocity field, u(x, t).

It can be easily checked that the equations at order ε and ε2

are:

O(ε): ∂tθ
(1)

+ (v · ∂) θ (1) − D0 ∂
2θ (1)

= −(v · ∇)θ (0) − ε∂τ θ
(0) (A.5)

O(ε2): ∂tθ
(2)

+ (v · ∂) θ (2) − D0 ∂
2θ (2)

= −∂T θ
(0)

− (v · ∇)θ (1) + D0∇
2θ (0)

+ 2D0(∂ · ∇)θ (1) − ε∂τ θ
(1). (A.6)

Now we make use of the resolvability conditions for Eqs.
(A.5) and (A.6) (Fredholm alternative) and we exploit the
fact that the solution θ (0) goes to zero on fast time scale
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(i.e. θ (0)(x, t; X, T ; τ) = θ (0)(X, T ; τ)). The linearity of (A.6)
permits us to search for a solution in the form

θ (1)(x, t; X, T ; τ) = 〈θ (1)〉(X, T ; τ)+ w(x, t; X, T )

× ∇θ (0)(X, T ; τ), (A.7)

where the symbol 〈·〉 denotes the average over the periodicities.
The following equation is obtained

∂T θ
(0)

+ (U · ∇)〈θ (1)〉 + ε∂τ 〈θ
(1)

〉 = ∇α

(
Dαβ∇βθ

(0)
)

(A.8)

where

Dαβ(X, T ) = δαβD0 − 〈uαwβ〉 (A.9)

is the eddy diffusivity (which is actually a second-order
tensorial field) and w(x, t; X, T ) has a vanishing average over
the periodicities and satisfies the following equation:

∂t w + [(u + U) · ∂] w − D0 ∂
2w = −u. (A.10)

Multiplying Eq. (A.8) by ε2, the resolvability condition of
Eq. (A.5),

ε∂τ 〈θ
(0)

〉 + (U · ∇) 〈θ (0)〉 = 0, (A.11)

by ε and summing one gets:

εε∂τ 〈θ
(0)

〉 + ε2∂T 〈θ (0)〉 + ε2ε∂τ 〈θ
(1)

〉 + (U · ε∇)〈θ (0)〉

+ (U · ε∇)ε〈θ (1)〉 = ε∇i

(
Di jε∇ j 〈θ

(0)
〉

)
(A.12)

which can be thought of as the second-order restriction of the
following equation:

(εε∂τ + ε2∂T )(〈θ
(0)

〉 + ε〈θ (1)〉)+ (U · ε∇)(〈θ (0)〉 + ε〈θ (1)〉)

= ε∇i

(
Di jε∇ j (〈θ

(0)
〉 + ε〈θ (1)〉)

)
. (A.13)

Finally we can identify θL ≡ (〈θ (0)〉+ ε〈θ (1)〉) and resort to the
original physical space-time variables:

(εε∂τ + ε2∂T ) → ∂t ε∇ → ∂

to obtain

∂tθL + (U · ∂)θL = ∂i (Di j∂ jθL). (A.14)

It is worth remarking that in the limit ε → 0 the problem
reduces to the one analyzed by [11].

Appendix B. Expressions for the asymptotic diffusivity

There are two, in principle non-equivalent, ways to obtain
the large-scale equation (29). The first one is to apply
the homogenization technique to Eq. (1), while the second
possibility is to start from the meso-scale model equation (7).
This is also known as “reiterated homogenization” [8].

Following the first approach the (exact) value of the eddy-
diffusivity tensor, DL,ex , depends on both the molecular
diffusivity and the advection by the total velocity field v =

U + u:

DL,ex
i j = D0δi j −

〈viχ j 〉 + 〈v jχi 〉

2
. (B.1)
Here brackets denote averages with respect to the periodicities
(spatial and temporal) of the total advecting velocity field v. To
obtain Eq. (B.1) u and U are assumed to vary on scales of the
same order O(1/ε′) and the dynamics is observed at scales L of
order O(1). The auxiliary field χ is the solution of the following
equation

∂tχ + (v · ∂)χ − D0∂
2χ = −v. (B.2)

With the reiterated homogenization the asymptotic eddy-
diffusivity tensor DL results from the combined effects of
the advection given by the large-scale flow U(X, T ) and the
effective diffusion at scale ` that depends on space and time
through Di j (X, T ) (see [16] for a detailed derivation),

DL
i j = −

〈Uiχ j 〉 + 〈U jχi 〉

2
+

〈Dik∂kχ j 〉 + 〈D jk∂kχi 〉

2

+
〈Di j 〉 + 〈D j i 〉

2
. (B.3)

Here the vector field χ is obtained by the auxiliary equation

∂tχk + (U · ∂)χk − ∂i (Di j∂ jχk) = −Uk + ∂i Dik . (B.4)

Both procedures lead to an effective diffusive equation
(29) but with two (a priori) different eddy-diffusivity tensors.
Such difference is due to the fact that in first procedure scale
separation between u and U is assumed to be of O(1/ε), with ε
not necessarily small and independent of ε′. In the reiterated
homogenization approach, ε must be related to ε′. The two
approaches coincide for the particular choice ε′ = ε [8].
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