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Systems showing stochastic resonance (SR) or coherent resonance (CR) sha

features, in particular, the nearly periodic character of the signal. We show that in sp

resemblance the different underlying dynamics can be detected in experimental

studying the histogram of the inter-spikes times and some statistical properties like

correlation functions. We discuss its possible relevance for climate modeling.
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85 Roma,
The mechanism of stochastic resonance (SR) was initially introduced as a
explanation for climate changes on long time scales [1]. During the last two
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it has been applied to a wide class of systems such as analog circuits, neurobiology,
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ring lasers, systems with colored noise, etc.; for a review see Ref. [2].
The prototypical system showing SR, which is also the original one used t

climate changes, is the stochastic differential equation

dx

dt
¼ �

qV ðx; tÞ

qx
þ

ffiffiffiffiffiffiffi
2D
p

Z ,

where Z is a Gaussian white noise with hZðtÞi ¼ 0 and hZðtÞZðt0Þi ¼ dðt
measures the noise intensity and V ðx; tÞ is a double-well potential with
periodic term

V ðx; tÞ ¼
x4

4
�

x2

2
þ Ax cosð2pt=TÞ .

In the case of a stationary potential, i.e., A ¼ 0, the jumps between the two
at x ¼ �1 and x ¼ 1 are independent events whose probability distrib
approximately Poissonian [3]. Using simple arguments based on the Kram
time formula [4], it can be shown that there is a range of values of D; T and
SR is present, i.e., the jumps between the two minima (close to �1 and þ
sufficiently small) are strongly synchronized with the forcing and that the pro
distribution function (PDF) of the jumping time t has a relatively sharp peak
T [1,2].

The phenomenon of SR provides one example of the nontrivial role th
can play in dynamical systems with an external periodic forcing. Besides S
exist other examples of the ‘‘constructive role’’ of noise, e.g., one can
synchronization of trajectories generated by different initial conditions and t
noise realization [5]. Our interest will focus on cases where noise can
periodic behavior, e.g., the so-called coherent resonance (CR) and the noise
dynamics in systems with time delay (ND).

The phenomenon of CR [6] has been found in models describing excitable
that occur in different fields like chemical reactions, neuronal and other b
processes [7,8]. The prototypical stochastic differential equation used in thi
the FitzHugh–Nagumo system defined by

�
dx

dt
¼ x�

x3

3
� y ,

dy

dt
¼ xþ aþ

ffiffiffiffiffiffiffi
2D
p

Z ,

with �51 so that the time evolution of x is much faster than that of y: Fo
there is a stable fixed point; for jajo1 there is an unstable fixed point and
cycle. The cycle consists of two portions of slow motion connected by a fast
jaj is slightly larger than 1 the system is excitable [6], i.e., small deviations f
fixed point may generate large pulses (also called spikes) [9]. Moreover, in t
one finds that there is a range of values of the noise intensity D such
appears, i.e., roughly periodic noise-excited oscillations are present, resemb
SR oscillations [6].



The prototypical example for ND [10] is the over-damped particle motion in the
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double-well potential V ðxðtÞ; xðt� TÞÞ:

dxðtÞ

dt
¼ �

qV ðxðtÞ;xðt� TÞÞ

qxðtÞ
þ

ffiffiffiffiffiffiffi
2D
p

Z

¼ xðtÞ � xðtÞ3 � Axðt� TÞ þ
ffiffiffiffiffiffiffi
2D
p

Z ,

where T is the delay. It is not very difficult to realize that the delay term A

has a role similar to that of the periodic forcing in Eqs. (1, 2). Accordin
certain range of parameters’ values, there is a sort of periodic motion with p
or 2T (this depends upon the sign of A). This ND equation had been propo
model for some climate changes [11].

Although SR, CR and ND are similar phenomena, in the sense that th
evolution is nearly periodic, there are also some important differences. For e
(a) due to the presence of the term Axðt� TÞ; Eq. (5) is in fact an
dimensional system since in order to determine xðtÞ for t40 one has to spe
with �Tpt0p0. On the contrary, for Eq. (1), it is sufficient to know xð0Þ. (b
case of SR, the periodicity is due to the external forcing while in the CR c
periodicity has an internal origin, i.e., the periodic motion is due to the
dynamics and, at variance with SR, its period cannot be changed by tuning
control parameters. This difference can play an important role in, e.g., the co
climate changes and glaciation; for more details, refer to the last section.

The aim of this paper is to analyze the differences among SR, ND and
their possible relevance to applications. In Section 2, we will briefly revie
properties of the PDF of the inter-spikes times for SR, ND and CR. In pa
we recall a recent result [12] showing that CR and SR are not confli
excluding mechanisms, i.e., the same periodically driven system, e.g., the o
by Eqs. (3, 4) with a time-dependent parameter aðtÞ ¼ a0 þ a1 cosð2pt=TÞ can
a transition from SR to CR behavior when the noise intensity D is incre
Section 3, we show that, in spite of some resemblance, SR, ND and CR
different statistical features which, at least in principle, can be dete
experimental data. In particular, we have that for SR the correlation
CðtÞ, after a transient period, is periodic and does not relax to zero. On the c
for the CR and ND cases, CðtÞ shows damped oscillations. Section 4 is de
general remarks and conclusions. In particular, we deal with the potential r
of the differences between SR, CR and ND to climate modeling.
2. Statistics of inter-spikes times

ection is
d ND, a
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One basic feature shared by the three models introduced in the previous s
the presence of two characteristic states: two equilibria in the case of SR an
rest state and an excited one in the FitzHugh–Nagumo model. Jumps betwe
states are made possible by the noise. Moreover, it turns out that there e
optimal value of the noise intensity such that this jumping becomes appro
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constant.
According to the terminology of biological systems, where CR was o

introduced, we will refer to the time interval between consecutive transition
‘‘inter-spikes time t’’. In the case of system (3, 4) where the dynamical variab
well-defined maxima, the definition of the inter-spikes time t is rather natura
case of the other two systems (1, 2) and (5), one can define t as t ¼ tnþ1 � tn

is the nth crossing time, i.e., xðtnÞ ¼ 0 and _xðtnÞ40. A measure of the
periodic character is provided by the normalized variance NV of inter-spik
NV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðtÞ

p
=hti. For generic noise intensity the transitions occur at

times, and pðtÞ, the PDF of inter-spikes times, is weakly localized, i.e., NV is
1. We define the resonant or optimal value of the noise intensity and denote
as the value of D for which the system has minimal normalized variance N

In Fig. 1, we show the PDF of the inter-spikes time interval in the case o
the system described by Eq. (1) at the optimal noise intensity D� ¼ 0:1. We
pðtÞ is peaked around t ¼ nT with n ¼ 1; 2; . . ., and that the env
approximately exponential. This feature can be easily explained as follows:
the trajectories xðtÞ, starting at t ¼ 0 from the favored well, i.e., xð0Þ ¼ 1
0
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Fig. 1. PDF of the inter-spikes time in the system described by Eq. (1) showing stochastic resonance. The

external periodic force has period T ¼ 100 and amplitude A ¼ �0:15. The noise intensity is at the

corresponding optimal value D� ¼ 0:10.
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minimum at x ¼ �1 and after a half-period they will jump back again ont
However, a fraction of the trajectories remains in the ‘‘wrong position’’ (i.e
unfavored well) for t close to T. Calling P the probability of this event, we h
the integral of pðtÞ around T, say for t 2 ½0:5T ; 1:5T �, is ð1� PÞ. The eve
inter-spikes time t�nT correspond to trajectories xðtÞ which are in the ‘
minimum at T ; 2T ; . . . ; nT . Taking into account the periodicity of the forc
assuming that the system’s memory is much shorter than the external peri
have that the probability of having xðtÞ in the ‘‘wrong’’ minimum at t�kT u
condition that xðtÞ was in the ‘‘wrong’’ minimum at t�ðk � 1ÞT does not
on the behavior for toðk � 1ÞT . Therefore, the integral of pðtÞ aroun
ð1� PÞPn�1�e�cn with c ¼ � lnP. The envelop of the inter-spikes-interval hi
has recently been computed by Berglund and Gentz [13] in a more gen
rigorous setting.

In the case of CR (not shown) and ND, see Fig. 2, the PDF of the inter-spi
interval is peaked around T where T is the characteristic internal time of the
namely the delay time in the ND case and the period of the limit cycle in the C
The parameters of the memory term in the ND model (5) have been chosen
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Fig. 2. PDF of the inter-spikes time in the system described by Eq. (5). The amplitude of the delay term

is A ¼ �0:15, and the delay time is T ¼ 100. The noise intensity is at the corresponding optimal

value D� ¼ 0:10.
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are identical to the amplitude and period of the external forcing in Eq.
consequence of this choice is that the intensity of the optimal noise coinci
that in the SR model. Notice that, at variance with the SR case, no peaks are
at multiples of T.

In summary, in all three systems, there exists an optimal noise intensit
produces a roughly periodic signal xðtÞ. At this intensity a sharp peak appea
inter-spikes time PDF. In the case of CR and ND the PDF has only one max
t ¼ T . On the other hand, in the case of SR other maxima appear at nT. Th
can be considered as one of the distinctive marks of the stochastic reson
contraposition to the CR and ND cases, the periodicity of the signal in the S
induced by an external periodic force, which triggers the jumps at fixed time
in such a way that the system synchronizes with this external ‘‘clock’’.

The combined effects of noise and nonlinearity can result in more
behavior [14,15]. In particular, it has recently been shown in Ref. [12]
and CR can coexist in the same system. This behavior occurs, e.g.,
model (3, 4) when small oscillations are imposed on the control pa
aðtÞ ¼ a0 þ a1 cosð2pt=TÞ. We consider only a0 and oscillation amplitudes
that the control parameter aðtÞ never crosses the critical value, i.e., aðtÞ41
presence of these small oscillations determines privileged times tn ¼ ð2nþ 1
which the system is closer to the excited state, i.e., aðtnÞ approaches 1 from
and a noise-induced transition is facilitated. Analogous to the case of the dou
system with periodic forcing, there exists an optimal noise intensity for
regular, quasi-periodic behavior emerges. More precisely: at low noise inten
has rather sharp peaks at t ¼ nT with an approximately exponential e
showing all the features of SR; see the two upper panels in Fig. 3. At high
intensity, as in the two lower panels in Fig. 3, the small oscillations in aðtÞ

irrelevant and the system shows CR as if the control parameter were fixed at
value a0. The shape of pðtÞ behaves accordingly as the noise increases: the ma
SR diminish and a single peak with an exponential tail appears at t ¼ T� wh
the period of the system’s limit cycle.

Moreover, when the external force period T is shorter than the internal, lim
period T� there are peaks only for nTXT� because once the excited state is
the system needs at least a time T� in order to relax back into the excitable, r
and restart the whole cycle (see Fig. 4).
3. Conditional averages and correlation functions

r rather
analysis
. In the
the SR

bring to
If one would observe just a single trajectory, SR, CR and ND would appea
similar since the three cases would present us with a nearly periodic xðtÞ. An
based on Fourier spectra, as it is often done, would reinforce this case
previous section, we contrasted the multi-peaked PDF of inter-spikes time in
case with the one-peaked PDF in the CR and ND cases. In this section, we
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Fig. 3. PDF of the inter-spikes time in the FitzHugh–Nagumo model Eqs. (3, 4) with parameter values

a0 ¼ 1:05, a1 ¼ 0:04, � ¼ 0:01 and T ¼ 104T� ¼ 3:7 for different noise intensities. From top to bottom,

D ¼ 2:5� 10�5, D ¼ 4:3� 10�5, D ¼ 1:1� 10�4, D ¼ 2:3� 10�4 and D ¼ 4:3� 10�3.
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both in the CR and in the ND cases.
Consider an ensemble of N trajectories fxðnÞðtÞ; n ¼ 1; . . . :;Nb1g; sharing t

initial conditions xðnÞð0Þ ¼ x0, but with different realizations of the noise
compute from Eqs. (1), (3, 4) and (5) the conditional average hxðtÞjx0i

hxðtÞjx0i ¼
1

N

XN

n¼1

xðnÞðtÞ ,

and the conditional variance

s2ðtÞ ¼ hx2ðtÞjx0i � hxðtÞjx0i
2

¼
1

N

XN

n¼1

½xðnÞðtÞ � hxðtÞjx0i�
2 .

In Figs. 5 and 6 we show hxðtÞjx0i and s2ðtÞ as functions of time t, for the
and the CR case, respectively. In both cases the noise-intensity values D

optimal ones. In the SR case, hxðtÞjx0i does not relax to zero at large time
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Fig. 4. As in Fig. 3 but with T ¼ 1oT� ¼ 3:7.
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minima when the absolute value of the conditional average hxðtÞjx0i rea
maxima. The largest values for s2ðtÞ are achieved when hxðtÞjx0i is around
other words, the main uncertainty in the process occurs around T=4; 3T=4; 5
so on, i.e., when the jumps between the two minima take place.

As can be seen in Fig. 6, the behavior found in the CR case is different. E
the noise intensity at its optimal value, after a few damped oscillations, b
conditional average and variance relax to the constant values hhxðt
hhx2ðtÞii � hhxðtÞii2, where hh� � �ii indicates a time average.

This behavior underlines the intrinsic difference between the SR a
mechanisms. In the case of SR, the presence of an external synchronizi
makes the transitions from state þ1 to state �1 occur at around preferred
set of independent replicas, initially localized in one of the two wells, will t
quickly reach a periodic configuration with the maximum probability localiz
time-dependent favored well. On the contrary, in the CR case, there are no ex
defined preferred times for the transitions; therefore, each replica quickly
initial synchronization with the other ones and after a few time periods th
occur at different times for different replicas.

The correlation function

CðtÞ ¼
hhxðtþ tÞxðtÞii � hhxii2

hhx2ii � hhxii2



behaves in a manner similar to hxðtÞjx0i: in the CR case it relaxes to zero while in the
8. If one
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Fig. 5. Conditional average hxðtÞjx0i (solid line) and conditional variance s2ðtÞ (dashed line) in the case of

SR for the system described by Eq. (1). The initial position is x0 ¼ 1, i.e., in the favored well. The external

force has period T ¼ 100 and amplitude A ¼ �0:15. The noise intensity is at its optimal level D ¼ 0:10.
The average is taken over N ¼ 104 realizations of the noise.
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SR case it remains periodic with a nondecreasing amplitude; see Figs. 7 and
defines a correlation time tc as

tc ¼
Z 1
0

CðtÞ2 dt ,

one finds that tc diverges in the SR case while it remains finite in the CR
that, as a function of the noise-intensity, it attains its maximum tc ¼ 1:0
optimal noise-intensity value. The behavior in the ND case (not sh
qualitatively very similar to that obtained in the CR case.
4. Conclusions and discussion

used on
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hieves a
The numerical study of SR, CR and ND presented in this paper is foc
contrasting statistical features which would be difficult or impossible to d
simply looking at the spectrum since the spectrum shows a peak that ac
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Fig. 6. Same as in Fig. 5 in the case of CR for the system described by Eqs. (3, 4) with a ¼ 1:05, � ¼ 0:01
and optimal noise intensity D ¼ 2:5� 10�3. The initial position is x0 ¼ 2; y0 ¼ 0:8, i.e., in the excited state.

The average is taken over N ¼ 104 realizations of the noise.
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studied. As we have seen, it is possible to distinguish between the
underlying dynamical mechanisms by studying the PDF of inter-spike
conditional averages and time-delayed correlation functions.

We believe that these results are of interest not only in the context of dy
systems but also in the study of certain climate phenomena. For time s
order O ð105 yrÞ and larger, Broecker et al. [16] has proposed that Earth’s clim
been determined by the influx of solar energy to such an extent that the fluc
in, e.g., the global mean temperature and seasonality, must have been
correlated with the variations in the incoming energy flux due to the period
Earth’s orbit.

Another possible issue, for which the presented results are potentially int
is the so-called Dansgaard–Oeschger (DO) events [17] which have been inferr
the study of late Pleistocene ice cores and marine sediments. These measu
show rapid warmings of the atmosphere followed by a much slower decay b
the average glacial conditions. The warmings took place on a time scale
decades while the relaxation back into glacial temperatures lasted some cent
to millennia. They seem to have occurred at intervals of 1500� 200 yr or
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Fig. 7. The periodic correlation function CðtÞ of the SR model Eq. (1). Parameters’ values as in Fig. 1.
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before present. The discovery of these rapid warmings led to the propo
number of possible explanations, some of them favoring the internal origi
period approximately equal to 1500 yr [19–21], while other explanations a
similar period due to an external astronomical forcing [22], i.e., an SR-type s
In particular, it was shown that in an ocean-circulation box model and w
appropriate parameters’ range, the purely deterministic system has a fixed p
does not show any time dependence while the addition of noise leads
generation of spikes with a well-defined inter-spikes time interval [23], i
coherence resonance is present in this ocean circulation model. As disc
Section 2, now we know that, at least in some systems, it is possible to obser
CR or SR behavior depending upon the noise intensity.

We have shown that it is possible to distinguish between the SR and CR
looking at time-delayed correlation functions and at the PDF of the inte
times. Needless to say, in order to compute such correlation functions or the
sufficiently long and accurate series of measurements is required. From the
information about the DO events that has been extracted from the geologica
it is difficult to decide in favor of one scenario or the other. Indeed, the PDF



inter-spikes time is qualitatively in agreement with the one observed in the SR case.
do not
ld seem
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On the other hand, the time values at which one observes peaks of the PDF
correspond to known astronomical periods; accordingly, a CR scenario wou
more appropriate.
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