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We discuss the phenomenology of the split energy cascade in a three-dimensional thin fluid layer
by means of high resolution numerical simulations of the Navier-Stokes equations. We observe the
presence of both an inverse energy cascade at large scales, as predicted for two-dimensional turbulence,
and a direct energy cascade at small scales, as in three-dimensional turbulence. The inverse energy
cascade is associated with a direct cascade of enstrophy in the intermediate range of scales. Notably,
we find that the inverse cascade of energy in this system is not a purely 2D phenomenon, as the
coupling with the 3D velocity field is necessary to guarantee the constancy of fluxes. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4986001]

I. INTRODUCTION

Fifty years ago, Kraichnan showed in his seminal paper1

that the dynamics of an incompressible flow in two-dimensions
(2D) are dramatically different from the classical phenomenol-
ogy of three-dimensional (3D) turbulence. The presence of
two inviscid quadratic invariants, energy and enstrophy, gives
rise to a double-cascade scenario.2 At variance with the 3D
case, in which the kinetic energy cascades toward small vis-
cous scales, in 2D it is transferred toward large scales. Such an
“inverse energy cascade” is accompanied by a “direct enstro-
phy cascade,” which proceeds towards small scales.3 In the
inverse and direct ranges of scales, the theory predicts a kinetic
energy spectrum E(k) ' ε2/3

f k−5/3 and E(k) ' η2/3
f k−3 with

possible logarithmic corrections.4 Here and in the following,
εf and ηf denote the energy and the enstrophy injection rates,
respectively. Kraichnan’s seminal concept of inverse cascade
has since become a prototypical model for several turbulent
systems, from the inverse cascade in strongly rotating 3D
flows5 to the inverse cascade of magnetic helicity in three-
dimensional magneto-hydrodynamic turbulence,6 of passive
scalar in compressible turbulence,7 and of wave action in weak
turbulence.8

The presence of the two cascades in two-dimensional
turbulence has been observed in a number of numerical sim-
ulations9–18 and in experiments on soap films19–25 and in thin
fluid layers.26–28

At variance with the numerical investigations, which
allow the study of the ideal 2D Navier-Stokes equations, the
experiments have to deal with the effects of the finite thickness
of the fluid layer. This issue, which has been often considered
a limitation for two-dimensional experiments, opens a series
of interesting questions. How is the ideal 2D phenomenology
modified in the case of a thin (3D) fluid layer? How thin should
the layer be, in order to display the 2D-like double cascade?
In which way does the transition from the 2D to the 3D regime
occur at increasing the thickness of the layer?

These questions have been addressed both in numerical
simulations29,30 and in experiments,31,32 which have shown

that the critical parameter that controls the cascade direc-
tion is the ratio S = Lz/Lf of the thickness to the forcing
scale. When S ≥ 1, the flow is 3D at the forcing scale and
the injected energy produces a direct cascade as in usual 3D
turbulence. By decreasing S, one observes the phenomenon
of cascade splitting, with a fraction of the injected energy
going to large scales and the remaining energy flowing to
small scales.29,30 For S � 1, the flux of the direct energy
cascade is expected to scale as S2. This prediction has been
verified in shell models for quasi-two-dimensional turbu-
lence.33 Further reducing S, the cascade of energy towards
small scales vanishes when the thickness Lz reaches the Kol-
mogorov scale Lν and the flow recovers the standard 2D
phenomenology.

In the present paper, we investigate the entanglement of
2D and 3D dynamics that occurs in a turbulent fluid layer
by means of numerical simulations of the 3D Navier-Stokes
equations in a confined domain with Lz < Lf (and Lz > Lν). In
agreement with previous findings, we observe the phenomenon
of splitting of the energy cascade. By introducing a suitable
decomposition of the velocity field, we show that the inverse
cascade mainly involves the kinetic energy of the 2D modes,
while the energy of the remnant 3D velocity is transferred
toward the viscous scales. We also show that the development
of the inverse energy cascade is associated with a partial con-
servation of the enstrophy in the intermediate range of scales
Lz < ` < Lf . Interestingly, we find that 3D modes play a rele-
vant role in the 2D phenomenology which is observed at large
scales. In particular, the transport of the 2D modes by the 3D
velocity is necessary to ensure a constant flux of energy in the
inverse cascade as well as a constant flux of enstrophy in the
range Lz < ` < Lf .

The remaining part of the paper is organized as follows.
Section II introduces the Navier-Stokes equations and the
decomposition of the velocity field in the 2D and 3D modes.
In Sec. III, we report the results of the numerical simulations.
Section IV is devoted to the conclusions. In the Appendix, we
derive a 2D model for the dynamics of a thin layer in the limit
Lz → 0.
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II. NAVIER-STOKES EQUATIONS FOR A THIN LAYER

We consider the dynamics of a three-dimensional thin
layer of fluid, ruled by the Navier-Stokes equations for the
velocity field u(x, t),

∂tu + u · ∇u = −∇p + ν∆u + f, (1)

where ν is the kinematic viscosity, f is the external forcing, and
the pressure p is determined by the incompressibility constraint
∇ · u = 0. The flow is confined in a thin domain of size
Lx = Ly = rLz with r � 1 and periodic boundary conditions in
all the directions.

In the absence of forcing and dissipation, (1) preserves the
kinetic energy E = (1/2)〈|u|2〉 (where 〈. . .〉 denotes average
over the space). The energy balance in the forced-dissipated
case reads

dE
dt
= εf − εν , (2)

where εν = ν〈(∇u)2〉 is the energy dissipation rate due to the
viscosity and εf = 〈 f · u〉 is the energy input provided by the
external forcing.

The forcing also provides an input of enstrophy
Z = (1/2)〈|ω |2〉, (ω = ∇× u denotes the vorticity field) at the
rate ηf = 〈(∇× f ) ·ω〉. At variance with the ideal 2D case, the
enstrophy is not preserved by the fully 3D inviscid dynamics,
but it is produced by the vortex stretching mechanism.34 The
equation for the vorticity field is obtained by taking the curl
of (1),

∂tω + u · ∇ω = ω · ∇u + ν∆ω + fω , (3)

where fω = ∇ × f and ω ·∇u represents the vortex stretching
term.

In order to highlight the presence of a 2D phenomenology
in the 3D flow, it is useful to decompose the velocity field as
u = u2D + u3D. The 2D mode u2D = (u2D

x (x, y), u2D
y (x, y), 0)

is defined as the average along the z direction of the x and
y components of the velocity field u, and it satisfies the 2D
incompressibility condition ∂xu2D

x + ∂yu2D
y = 0. In the Fourier

space, it corresponds to the mode k3 = 0 of the horizontal
velocity u2D(k1, k2) = (ux(k1, k2), uy(k1, k2), 0). The field u3D

is defined as the difference u3D = u − u2D. By the above def-
initions, it is easy to show that the total energy decomposes
into a 2D contribution E2D = (1/2)〈|u2D |2〉 and a 3D contri-
bution E3D = (1/2)〈|u3D |2〉 as E = E2D + E3D. We notice that,
beside the kinetic energy of the vertical velocity, E3D also con-
tains the contributions of the modes k3 , 0 of the horizontal
components of the velocity.

Similarly, the vorticity field can be decomposed as
ω = ω2Dẑ + ω3D, where ω2D = ∂xu2D

y − ∂yu2D
x is the scalar

vorticity of the two-dimensional flow. In the limit of vanishing
thickness Lz → 0 (at finite viscosity ν), the vertical dependence
disappears and u2D becomes solution of the 2D Navier-Stokes
equation (see the Appendix). Therefore, it is reasonable to
assume that the occurrence of an inverse energy cascade at a
finite thickness Lz should be associated with the dynamics of
the 2D mode u2D.

III. DIRECT NUMERICAL SIMULATIONS

We performed a direct numerical simulation of the Navier-
Stokes equations (1) in a confined geometry with periodic

boundary conditions. The computational domain has dimen-
sions Lx = Ly = 2π, Lz = Lx/64 (r = 64), and it is dis-
cretized on a uniform grid at the resolution Nx × Ny × Nz

= 4096×4096× 64. The numerical simulations are performed
by means of a fully parallel, pseudospectral code, with a 2/3
dealiasing scheme. We adopt a hyperviscous damping scheme
(−1)p−1νp∆

p with p = 4 and νp = 10−21. We do not use any
large-scale dissipation (such as linear friction).

The flow is sustained by a “two-components, two-
dimensional” forcing; that is, the forcing is active on the
horizontal components of the velocity, and it is dependent
on the horizontal coordinates only, f = ( fx(x, y), fy(x, y), 0).
Therefore, in the vorticity equation (3), the forcing fω is
active only on the 2D field ω2D. The forcing is restricted
to a narrow wavenumber shell in the Fourier space with
kh = (k2

1 + k2
2 )

1/2
' kf , k3 = 0. Here kf = 16. The forcing is

Gaussian and δ-correlated in time to control the injection rates
εf and ηf . The characteristic time at the forcing scale is defined
as τf = η

−1/3
f . The ratio between the thickness Lz = 2π/kz and

the forcing scale Lf = 2π/kf is S = Lz/Lf = 4. This ensures the
regime of split cascade with the coexistence of the 3D and 2D
phenomenologies (see Fig. 1).30

The velocity field at time t = 0 is initialized to zero plus a
small random perturbation that is required to trigger the 3D in-
stability. The results shown in this section have been obtained
with an energy of the initial perturbation Epert ' 1.6× 10−7εf τf .

Because of the purely 2D forcing, in the early stage of the
simulation (t < 10τf ), the energy accumulates in the 2D mode
u2D at a rate equal to the forcing input, while the energy E3D

of the 3D component is negligible (see Fig. 2). The activation
of the 3D modes u3D (at t ' 10τf ) is accompanied by a sig-
nificant reduction of the growth rate of the 2D energy as some
of the injected energy is now transferred to small scales. At
later times, E3D saturates to a statistically steady value (as in
standard 3D turbulence), while the two-dimensional compo-
nent E2D energy keeps increasing with a constant reduced rate
εα < εf . We stop the simulation at time t = 100τf , when the
inverse energy cascade has reached the lowest wavenumber
(see Fig. 4). Continuing the simulation further, in the absence

FIG. 1. Snapshot of the scalar vorticity field ω2D in the late stage of the
simulation. Typical two-dimensional objects, such as strong vortices at the
forcing scale Lf , coexist with small scale three-dimensional features.
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FIG. 2. Temporal evolution of the kinetic energy E2D (red, dashed line, left
y-axis) and E3D (blue, solid line, right y-axis). The dotted line represents the
linear growth with the input rate εf (left y-axis).

of large-scale dissipation, we expect that the kinetic energy
will accumulate in the lowest mode, giving rise to the so called
condensate.35–37 The 2D mode contains almost all the kinetic
energy of the horizontal velocities, and the kinetic energy of the
vertical component uz contained in the mode k3 = 0 represents
only 24% of the total.

The enstrophy of the 2D mode Z2D = 1/2〈(ω2D)
2
〉 grows

initially with the input rate ηf , reflecting the purely 2D nature
of the initial flow (see Fig. 3). As 3D motions develop (at
t ' 10τf ), the enstrophy associated with the 3D modes
Z3D = 1/2〈|ω3D |2〉 increases very rapidly and reaches a sta-
tionary value which is much larger than the saturation level
of Z2D.

A. Energy spectra

In Fig. 4, we show the instantaneous spectra E(k, t) of the
total energy at different times t. The initial spectra are almost
completely 2D because the forcing is active only on 2D modes.
We observe that the 3D instability begins at high harmonics
of the thickness wavenumber kz, then propagating to all the
modes k > kz. The energy spectrum at k > kf saturates at time
t ' 16τf . At scales larger than the forcing scale, k < kf , we

FIG. 3. Temporal evolution of the enstrophy of ω2D (red, dashed line, left
y-axis) and ω3D (blue, solid line, right y-axis). The dotted line represents the
linear growth with the input rate ηf (left y-axis).

FIG. 4. Energy spectra E(k, t) at times t/τf = 4.6 (a, violet), 6.9 (b, green),
9.2 (c, cyan), 13.7 (d, orange), 18.3 (e, yellow), 45.8 (f, blue), and 91.6
(g, red). The last three spectra are almost superposed for k > kz .

observe the development of an inverse energy cascade with a
power-law spectrum E(k) ' ε2/3

α k−5/3.
The “spiky” aspect of the energy spectrum at high

wavenumbers k > kz is due to the anisotropic spacing of the
wavenumbers in the Fourier space. The separation between
the discrete wavenumbers in the horizontal direction is ∆kh

= 2π/Lx, while in the vertical direction it is∆k3 = 2π/Lz = kz.
Given that Lz � Lx, the wavenumber space is structured as
horizontal dense layers, separated by large gaps in the vertical
direction. Because the complete energy spectrum is defined as
the integral of the square amplitude of the modes over a spher-
ical wavenumber shell of radius k, one gets a sudden increase
of the spectrum each time the spherical shell is a multiple
of kz.

In order to analyze the contribution of the 2D mode to
the total energy spectrum, it is also interesting to consider the
2D spectra E2D(k), in which the integral is restricted to the

horizontal wavenumbers kh =

√
k2

1 + k2
2 on the plane k3 = 0.

In physical space, this is equivalent to averaging the velocity
fields in the vertical direction z first and then computing the
spectrum of the averaged 2D fields. It is worth to notice that
for k < kz, the 2D spectra and 3D spectra coincide because the
spherical shell of radius k < kz intersects the planes k3 = ±mkz

only for m = 0.
In Fig. 5, we compare the 2D energy spectrum E2D(k)

of the 2D mode u2D with the 3D energy spectrum of the 3D
mode u3D. At low wavenumbers k < kz, almost all the kinetic
energy is contained in the 2D mode. This confirms that the
inverse cascade that develops in the range k < kf concerns
only the 2D energy. Conversely, the 3D mode contains the
largest fraction of the kinetic energy at high wavenumbers
k > kz. Interestingly, in the same range of wavenumbers, the
2D spectrum of the 2D mode displays a �5/3 slope, and it is
very close to the 2D spectrum of the vertical component uz.

The spectrum E2D(k) shown in Fig. 5 is reminiscent of the
horizontal spectrum (of meridional and zonal winds) observed
in the upper troposphere by the Global Atmospheric Sampling
Program38 where a transition from a k�3 to a k�5/3 spectrum
at small scales is observed. We remark that despite the simi-
larities between the two spectra, the physical mechanisms are
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FIG. 5. Energy spectrum E2D(k) of the 2D mode u2D (red, dashed line) and
3D mode u3D (blue, solid line). We also show the 2D spectrum of the vertically
averaged vertical velocity uz (black, dotted line). The spectra are computed at
t = 100τf .

probably different (see, for example, Refs. 39 and 40) as the
transition in the atmospheric spectrum is observed at a scale
around 500 km, while in our simulations it occurs at a scale
comparable with the thickness of the layer.

B. Spectral fluxes

The analysis of the spectral flux of the total kinetic energy
ΠE(k) shows that in a thin fluid layer, the energy injected by the
forcing at the wavenumber kf indeed splits into two parts (see
Fig. 6). At low wavenumbers k < kf , we observe a constant,
negative flux of energy, which indicates the presence of an
inverse energy transfer toward large scales. At high wavenum-
bers k > kf , we also observe a constant energy flux, now
positive, indicating a direct cascade of energy toward small
scales. It is worth reminding that the kinetic energy transported
in the direct cascade is not only that of the vertical component
of the velocity but contains also the contributions of the modes
k3 , 0 of the horizontal velocities. In this range of scales, the
dynamics in the vertical and horizontal directions are strongly
coupled, and the positive energy flux cannot be explained in
terms of a direct cascade of the vertical velocity passively
transported by a two-dimensional, three components (2D3C)
flow.41–43

FIG. 6. Spectral energy flux ΠE (k) (blue solid line) and 2D energy flux (red,
dashed line), at t = 100τf .

As we have shown in Fig. 4, the inverse cascade mainly
involves the energy of the 2D mode. This observation suggests
one to check whether or not this inverse cascade coincides with
a purely 2D dynamics of the 2D mode u2D. To this purpose,
we have taken the fields u2D and truncated them at kh = kz

by setting to zero all the modes with kh > kz. Then, we have
computed the 2D spectral fluxes of the truncated 2D fields,
assuming that they were solutions of the two-dimensional
Navier-Stokes equations. Surprisingly, we find that the 2D
energy flux in the range of scales of the inverse cascade does
not coincide with the 3D flux shown in Fig. 5. The physi-
cal interpretation of this result is that the energy of the 2D
mode is not simply transported toward large scales by the 2D
flow itself, but the 3D modes contribute to the transport pro-
cess. This contrasts with a 2D3C scenario at large scales, with
the vertical velocity being passively transported by the 2D
flow.41–43

As discussed in Sec. II, the main difference between the
3D and 2D Navier-Stokes equations is the absence of the
vortex stretching term ω · ∇u in the latter. The presence of
two positive-defined inviscid invariants (energy and enstro-
phy) causes the reversal of the direction of the energy cascade.
Even if the enstrophy is not conserved by the 3D dynamics, it
is tempting to conjecture that the development of the inverse
cascade in thin fluid layers is due to a dynamical suppres-
sion of the enstrophy production. To investigate this issue, we
computed the total spectral enstrophy flux Πz(k) and the total
spectral enstrophy production ΣZ (k) defined as

ΠZ =

∫
|q | ≤k

dq(3 · ∇ω)(q)ω∗(q), (4)

ΣZ =

∫
|q | ≤k

dq(ω · ∇3)(q)ω∗(q). (5)

In the range of wavenumbers kf < k < kz, the production
of enstrophy is negligible and the enstrophy flux is constant, as
shown in Fig. 7. This constant flux corresponds to the presence
of a direct enstrophy cascade. At high wavenumbers, k > kz,
the enstrophy production becomes significant and, therefore,
the enstrophy flux is not constant anymore but grows following
the production term. Our results show that in analogy with the

FIG. 7. Spectral enstrophy fluxΠZ (k) (red solid line), spectral enstrophy pro-
duction ΣZ (k) (blue, dashed line), and 2D enstrophy flux (black, dotted line),
at t = 100τf .
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case of ideal 2D Navier-Stokes equations, also in a thin fluid
layer, the emergence of the inverse energy cascade is due to
the presence of a “quasi invariant,” the enstrophy, which is
conserved by the large-scale dynamics. Nonetheless, it is worth
to notice that the conservation of the enstrophy is not due to the
transport by the 2D mode itself. Following the same procedure
described in the case of the energy flux, we have computed the
2D enstrophy flux from the truncated 2D velocity fields. In
the range of scale kf < k < kz, the 2D flux is positive, but
not constant, thus indicating that the fully 3D dynamics are
required for the conservation of enstrophy (see Fig. 7).

The presence of an intermediate direct enstrophy cascade
in the range of scales Lz < ` < Lf allows deriving a simple
dimensional argument for the scaling of the energy flux toward
small scales. A direct cascade with a constant enstrophy flux
ηf = εf k2

f also carries a residual energy flux, which decreases

asΠ(k) ∼ εf (kf /k)2. By assuming that the flux of the energy of
the direct cascade which starts from kz is equal to the residual
flux Π(kz) carried by the enstrophy cascade at the scale kz,
one gets the prediction εν = Π(kz) ∼ εf S2. This prediction
has been verified in shell models for quasi-two-dimensional
turbulence.33

IV. CONCLUSIONS

In this paper we present a numerical study of the phe-
nomenology of a turbulent flow confined in a thin fluid layer.
We discuss the possibility to disentangle the complex mixture
of 2D and 3D dynamics by a suitable decomposition of the
velocity field in 2D and 3D modes.

By analogy with previous studies,29,30 when the flow is
forced at scales Lf larger than the thickness Lz of the layer,
we observe a splitting of the energy cascade in two directions.
A fraction of the energy is transported toward large scales,
giving rise to an inverse energy cascade, while the remnant
energy is transported toward the small viscous scales, as in 3D
turbulence. We show that the inverse energy cascade is accom-
panied by the development of a direct cascade of enstrophy in
the intermediate range of scales Lz < ` < Lf . The enstro-
phy production becomes relevant only at small scales ` < Lz,
allowing for a partial conservation of the enstrophy by the
large-scale dynamics.

The scenario that emerges from our findings is a coexis-
tence of 2D phenomenology, with a double cascade of energy
and enstrophy à la Kraichnan at large scales ` > Lz and a 3D
direct energy cascade à la Kolmogorov at small scales ` < Lz.
Interestingly, the decomposition of the velocity field in the
2D modes and the remaining 3D part reveals that the 2D and
3D dynamics are deeply entangled. On the one hand, we find
that the energy and enstrophy that are involved in the dou-
ble cascade at large scales are those of the 2D modes. On
the other hand, the 3D velocity is necessary to guarantee a
constant flux of 2D energy and enstrophy in the large-scale
transport.

We plan to extend the analysis of the interactions between
2D and 3D modes to the case of rotating and stably strat-
ified thin fluid layers. Previous results44 show that rotation
causes a suppression of the enstrophy production similar to the
effects of confinement, favoring the two-dimensionalization of

the flow and the development of the inverse energy cascade.
Nonetheless, this effect is not accompanied by the presence of
a range of scales in which the enstrophy is conserved by the
large-scale dynamics. This is likely to affect the interactions
between the 2D and 3D modes. In the case of stably stratified
fluid layers, it has been shown that the conversion of kinetic
energy into potential energy, which is promptly transferred
toward the small diffusive scales, provides a fast dissipative
mechanism that suppresses the large scale energy transfer.45

Investigating the interactions between 2D vortical modes and
3D potential modes will improve the understanding of this
process.
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APPENDIX: 2D MODEL FOR THIN LAYERS

In this Appendix we discuss a two-dimensional model
to describe the dynamics of a thin layer in which both the
thickness Lz and the Kolmogorov scale Lν tend to zero, but
their ratio remains of order unity.

We consider the Navier-Stokes equations (1) in a box in
which the horizontal dimensions Lx = Ly = L are much larger
than the vertical thickness Lz = εL. The aspect ratio of the
box is determined by the ratio ε = Lx/Lz. We assume peri-
odic boundary conditions in all the directions. We assume
also that the external force f acts only on the horizontal
components and depends only on the horizontal coordinates:
f(x) = (fx(x, y), fy(x, y), 0).

The assumptions that the thickness Lz of the layer is very
small and that it is of the order of the viscous scale allows one to
suppose that the modes k3 > kz are suppressed by the viscosity
and can be neglected. Therefore, we make a Fourier truncation
in the vertical direction by retaining only the first modes in the
vertical direction k3 = 0,±kz, where kz = 2π/Lz = O(ε−1).
The velocity fields can be expanded as

ul = u0
l +
√

2
[
uc

l cos(kzz) + us
l sin(kzz)

]
(A1)

u3 = u0
3 +
√

2
[
uc

3 cos(kzz) + us
3 sin(kzz)

]
, (A2)

where l ∈ [1, 2]. Within this notation, the 2D mode u2D

introduced in Sec. II coincides with the field u0 = (u0
1, u0

2).
The incompressibility condition ∇ · u = 0 gives

∂lu
0
l = 0 ; ∂lu

c
l = −kzu

s
3 ; ∂lu

s
l = kzu

c
3. (A3)

This shows that the 2D mode u0 satisfies the 2D incompress-
ibility. The fields us,c

3 are determined by the compressibility
of the fields us,c

l . Expanding at leading order in ε the Navier-
Stokes equations (1), one obtains the equations for the fields
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u0
l , us,c

l , and u0
3,

∂tu
0
l + u0

n∂nu0
l = −∂lp + ν∂n∂nu0

l + fl (A4)

− ∂n(uc
nuc

l + us
nus

l ),

∂tu
c
l + u0

n∂nuc
l = ν∂n∂nuc

l − αuc
l (A5)

− uc
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l + u0
3kzu

s
l ,

∂tu
s
l + u0

n∂nus
l = ν∂n∂nus

l − αus
l (A6)

− us
n∂nu0

l − u0
3kzu

c
l ,

∂tu
0
3 + u0

n∂nu0
3 = ν∂n∂nu0

3 (A7)

+
(
uc

n∂n∂lu
s
l − us

n∂n∂lu
c
l

)
/kz,

where l, n ∈ [1, 2] and summation over repeated indices is
assumed.

The linear friction term −αus,c in the 2D model comes
from the derivatives in the vertical direction of the viscous term
in Eq. (1). At finite viscosity ν, in the limit kz → ∞, the friction
coefficient α = νk2

z diverges. The modes uc,s are, therefore,
exponentially suppressed. In this limit, the equation for the
2D mode u0 reduces to the two-dimensional Navier-Stokes
equations.

It is also interesting to consider the limit kz → ∞, in
which the viscosity vanishes as ν ∼ k−2

z → 0 such that
α = νk2

z → const. In this case, the 2D mode u0 remains
coupled with the 3D modes us,c. The latter are transported
and stretched by the gradients of the velocity field u0 and are
coupled among themselves as a harmonic oscillator whose
frequency is determined by the scalar field u0

3.
The stretching of the fields us,c is contrasted by the lin-

ear relaxation term −αus,c. If the dissipation prevails, the two
fields are exponentially damped and their feedback on the 2D
velocity field u0 can be neglected. Conversely, when stretching
dominates, part of the kinetic energy is transferred to the fields
us,c and is dissipated by the friction. The transition between the
two regimes is expected to occur when λ ∼ α, where λ is a suit-
able measure of the intensity of the gradients of the 2D mode.
A dimensional estimate based on the scaling laws of the direct
enstrophy cascade gives λ ∼ η1/3

f , where ηf is the enstrophy
flux. Recalling that the viscous scale Lν (defined as the scale
at which Re = 1) is Lν = ν1/2η−1/6

f and that α ∼ νL−2
z , the con-

dition λ > α for the transition is equivalent to Lz > Lν . This
shows that 3D modes can be excited only when the thickness
Lz is larger than the viscous scale Lν .

The development of the 3D modes causes a reduction of
the growth rate of the 2D mode. This can be seen from the
energy balance of the 2D model

d
dt

(E2D + E3D) = εf − 2αE3D, (A8)

where E2D = 1/2〈|u0 |2〉 is the energy of the 2D mode and
E3D = 1/2〈|uc |2 + |us |2〉 is the energy of the 3D modes. For
Lz > Lν , the E3D attains a positive, statistically constant value,
and therefore the growth rate dE2D/dt reduces to εα = εf

− 2αE3D < εf .
We notice that the model does not provide a quantitative

estimate of the energy E3D, which appears in Eq. (A8), and

therefore it is not possible to determine the scaling dependence
of the growth rate of E2D on the ratio Lz/Lν .
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