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Abstract. We inquire about the statistical properties of the pair formed by the
Navier–Stokes equation for an incompressible velocity field and the advection–
diffusion equation for a scalar field transported in the same flow in two dimensions
(2d). The system is in a regime of fully developed turbulence stirred by
forcing fields with Gaussian statistics, white noise in time and self-similar in
space. In this setting and if the stirring is concentrated at small spatial
scales, as if due to thermal fluctuations, it is possible to carry out a first-
principles ultraviolet renormalization group analysis of the scaling behavior of
the model. Kraichnan’s phenomenological theory of two-dimensional turbulence
upholds the existence of an inertial range characterized by inverse energy transfer
at scales larger than the stirring one. For our model Kraichnan’s theory,
however, implies scaling predictions radically discordant from the renormalization
group results. We perform accurate numerical experiments to assess the actual
statistical properties of 2d turbulence with power-law stirring. Our results clearly
indicate that an adapted version of Kraichnan’s theory is consistent with the
observed phenomenology. We also provide some theoretical scenarios to account
for the discrepancy between renormalization group analysis and the observed
phenomenology.
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1. Introduction

Two-dimensional (2d) turbulence is interesting for several reasons. In laboratory
experiments 2d turbulence has been realized and studied with electromagnetically driven
liquid metals [60, 59, 14] and thin soap films [61]–[63]. In geophysical flows, vertical
confinement suggests the possibility to describe the mesoscale dynamics of atmosphere
and oceans in terms of two-dimensional fluid models [19, 23]. Indeed, observational data
such as the Nastrom–Gage spectrum [55, 56], studies based on the MOZAIC database [53]
and on the EOLE Lagrangian balloons in the low stratosphere [42] support the existence
of a mesoscale −5/3 power-law energy spectrum which may be the consequence of a two-
dimensional inverse cascade. Although recent studies [44, 47] suggest the occurrence of
a fairly more complex physical phenomenology (see, e.g., [67, 68]), the 2d approximation
remains an important benchmark for understanding the atmospheric physics at synoptics
and planetary scales [45] as well as in other geophysical contexts (see [65, 40] and references
therein). For example, analysis of spectral kinetic energy fluxes in satellite altimeter data
provides strong evidence of the occurrence of an inverse energy cascade in the ocean [3].
From the point of view of statistical mechanics, 2d turbulence is a prototype of non-
equilibrium systems whose steady state is not described by Boltzmann statistics.
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At variance with its three-dimensional counterpart for which the total kinetic energy
is the unique inviscid invariant, the two-dimensional Navier–Stokes equation also preserves
the total enstrophy (in the absence of forcing and dissipation) [29]. Enstrophy conservation
is a key ingredient for the proof [41] of the existence and uniqueness of the solution
of the Cauchy problem for the 2d Navier–Stokes equation with deterministic forcing.
Very recently, this result has been extended to stochastic stirring. In particular, it was
shown [39, 15, 24, 16, 17, 50] that the solution is a Markov process exponentially mixing in
time and ergodic with a unique invariant (steady state) measure even when the forcing
acts only on two Fourier modes [31].

A phenomenological theory proposed by Kraichnan [36] and further extended by
Batchelor [4] and Leith [43] (see also [38, 5, 6, 44, 30]) predicts the presence of a double-
cascade mechanism governing the transfer of energy and enstrophy in the limit of infinite
inertial range. Accordingly, an inverse energy cascade with spectrum characterized
by a scaling exponent −5/3 appears for values of the wavenumber p smaller than pf ,
the typical forcing wavenumber. For wavenumbers larger than pf a direct enstrophy
cascade should occur. In this regime the energy spectrum should have a power-law
exponent equal to −3 plus possible logarithmic corrections hypothesized in [37] to ensure
constancy of the enstrophy transfer rate. Very strong laboratory experiments reviewed
in [65, 35] and numerical experiments (see, e.g., [12] and references therein) corroborate
Kraichnan’s theory. A long-standing hypothesis [58], which has recently found support
through numerical experiments [8, 9], also surmises the existence of a conformal invariance
underlying the inverse energy cascade of 2d turbulence.

Despite these successes, a first-principles derivation of the statistical properties
of 2d turbulence is still missing. An attempt in this direction has recently been
undertaken [33, 32, 34, 2] by inquiring about the scaling properties of the velocity field
and of the transported scalar field (passive scalar) when they are sustained by a random
Gaussian forcing with self-similar spatial statistics. The Hölder exponent ε of the forcing
correlation provides an order parameter interpolating between small scale thermal stirring
and large scale stirring.

In three (and more) dimensions ultraviolet renormalization group analysis [26, 22] of
this model yields the result 1−4ε/3 for the scaling exponent of the kinetic energy spectrum
holding to all orders in a perturbative expansion in powers of ε. Kolmogorov scaling [29]
is recovered when the energy input becomes dominated by its infrared components at ε
equal to two. The results of [26, 22] are coherent with physical intuition because only the
case ε = 2 is a model of fully developed turbulence. Recent numerical simulations validate
within the available resolution such a picture [64, 10].

The extension of renormalization group analysis to the 2d case is instead not
straightforward and was only achieved in [33]. Although the prediction for the kinetic
energy scaling exponent is the same as in the three-dimensional case, the result cannot be
easily reconciled with the phenomenological intuition based on Kraichnan’s theory. The
latter suggests the onset of an inverse energy cascade already at ε = 0 when the energy
and enstrophy input are dominated by the ultraviolet degrees of freedom.

The purpose of the present work is to shed light on the apparent contradiction between
the phenomenological and the renormalization group theory. In doing so, we extend and
complete results presented in a previous letter [51]. In particular, in section 2 we illustrate
the details and interpretation of the model. In section 3 we summarize the results of the
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renormalization group analysis found in [33, 32, 34, 2]. In section 4 we draw on [5, 6] to
solve the Kármán–Howarth–Monin equation under the hypotheses of Kraichnan’s theory.
In doing so, we focus our attention first on the parametric range where a direct comparison
with the renormalization group theory is possible. We also briefly discuss the predictions
of the phenomenological theory for the general case, as a benchmark for our numerical
experiments. In section 5 we compare the renormalization group predictions with the
outcomes of a direct numerical integration of the model equations. There we give clear
evidence that in all parametric ranges only the phenomenological theory à la Kraichnan
is able to describe the observed behavior of the stochastic flow. Finally, in section 6
we discuss possible mechanisms underlying the discrepancy between the renormalization
group predictions and the observed scaling behavior of the model.

2. The model

We consider the 2d Navier–Stokes equation governing the evolution of the velocity v of
an incompressible Newtonian fluid:

(∂t + v · ∂x)v = ν∂2
xv − ∂xP − v

τ
+ f (1)

∂x · v = ∂x · f = 0 (2)

and the forced advection–diffusion equation for a scalar (concentration) field θ:

(∂t + v · ∂x)θ = κ∂2
xθ + g (3)

where ν is the kinematic viscosity and κ is the diffusivity of the scalar field. The Ekman
friction term −v/τ included in equation (1) ensures that a steady state is attained by
damping kinetic energy transfer towards larger and larger scales [25]. Both equations (1)
and (3) are sustained by stochastic forcing fields, respectively f and g, with Gaussian
statistics such that

≺ f (x, t) �=≺ g(x, t) �= 0 (4)

and

≺ fα(x, t)fβ(y, s) �= δ(t − s)F αβ(x − y, mf , Mf ), α, β = 1, 2 (5)

≺ g(x, t)g(y, s) �= δ(t − s)G(x − y, mg, Mg). (6)

Whilst time decorrelation in (5) and (6) is meant to preserve Galilean invariance of the
statistics (in the absence of Ekman friction), the spatial part of the forcing correlations
is chosen to be isotropic and self-similar in a wavenumber range between well-separated
infrared mf , mg and ultraviolet Mf , Mg cutoffs. Specifically

F αβ(x, mf , Mf) = Fo

∫
d2p

(2π)2

eip·x

p2ε−2
Παβ(p̂)χf

(
m2

f

p2
,

p2

M2
f

)
,

m2
f

M2
f

� 1 (7)

with Παβ the transversal projector in Fourier space, ε the Hölder exponent and

G(x, mg, Mg) = Go

∫
d2p

(2π)2

eip·x

p2 h−2
χg

(
m2

g

p2
,

p2

M2
g

)
,

mg

Mg

� 1 (8)
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with Hölder exponent h. The explicit form of the isotropic cutoff functions χf and χg is
unimportant as far as they remain approximately constant for any wavenumber p in the
scaling range mf , mg � p � Mf , Mg. It is not restrictive to choose χf and χg normalized
to unity in the origin. Note that at ε and h equal zero the traces of (7) and (8) are
proportional to the Laplacian of a Dirac δ function centered at the origin. More generally,
the Hölder exponents ε and h determine the spectral composition of the energy injection.
For the velocity field one finds

IE(mf , Mf ) = Fo

∫
d2p

(2π)2
p2−2εχf

(
m2

f

p2
,

p2

M2
f

)
∝

{
M4−2 ε

f IE(0, 1), 0 ≤ ε < 2

m4−2ε
f IE(1, 0), ε > 2.

(9)

Similarly, the injection for the scalar field is dominated by wavenumbers around the
ultraviolet (infrared) cutoff for any h < 2 (h > 2). For the purposes of the present
analysis it is worth recalling the vorticity representation of the Navier–Stokes equation in
2d:

(∂t + v · ∂x)ω = ν∂2
xω − ω

τ
+ fω (10)

where

ω = εαβ∂xαvβ and fω = εαβ∂xαfβ

ε1 2 = −ε2 1 = 1 and ε1 1 = ε2 2 = 0.
(11)

Equation (10) implies the conservation of the total enstrophy Z:

Z =

∫
d2x ≺ ω(x, t)ω(0, t) �= −

∫
d2x ∂2

x ≺ v(x, t) · v(0, t) � (12)

whenever the right-hand side of (10) is negligible. For power-law forcing, the enstrophy
injection is also controlled by the Hölder exponent ε:

IZ(mf , Mf ) = Fo

∫
d2p

(2 π)2
p4−2 εχf

(
m2

f

p2
,

p2

M2
f

)
∝

{
M6−2 ε

f IZ(0, 1), 0 ≤ ε < 3

m6−2ε
f IZ(1, 0), ε > 3.

(13)

The relations (9) and (13) show that the energy and enstrophy injections are
simultaneously concentrated in the ultraviolet and in the infrared only for ε < 2 and
ε > 3, respectively.

3. Summary of the renormalization group analysis results

Let dA denote the scaling dimension of a physical quantity A. Crudely matching canonical
dimensions in (1) and (3) suggests, irrespective of the spatial dimension, the existence of
two scaling ranges: a dissipative one for wavenumbers such that nonlinear effects are
negligible:

dt = 2dx and dv = −dx(1 − ε) and dθ = −dx(1 − h) (14)
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and an inertial range corresponding to the requirement of Galilean invariance imposed by
matching the two terms of the material derivative Dt := ∂t + v · ∂x with the forcing:

dt = dx

(
2 − 2ε

3

)
and dv = −dx

(
1 − 2ε

3

)
and dθ = −dx

(
1 − h +

ε

2

)
.

(15)

For ε, h equal zero the scaling dimensions (14) and (15) coalesce. Physically, the
coalescence point corresponds to stirring by thermal noise. Coalescence hints at the
existence of a marginal case in the renormalization group sense. This means (see, e.g., [70])
that scaling dimensions at small but finite ε, h may be obtained in a Taylor series based
on their values in the marginal case in analogy to equilibrium critical phenomena where
marginality is defined by an upper critical dimension specified, for example, by Ginzburg’s
criterion. A similar scenario seems to apply to (1) for d > 2 and in the absence of large
scale friction (τ set to infinity). In such a case [26, 22, 1], fine-tuning the amplitude of the
forcing correlation (7) to be O(ε) yields an expansion in powers of ε around a Gaussian
theory specified by renormalized eddy diffusivities νR and κR. Ultraviolet renormalization
guarantees that the eddy diffusivities are related to the molecular viscosities appearing
in (1) and (3) by renormalization constants:

Zν :=
ν

νR
and Zκ :=

κ

κR
(16)

determined at any order in perturbation theory by subtracting all ‘resonant’ terms
diverging with the ultraviolet cutoffs Mf and Mg. Technically, this is achieved by
identifying the ultraviolet-divergent part of the one-particle irreducible vertex associated
with the response functions of the velocity and concentration fields [1]. The result is
that, within all order accuracy in ε, all correlation functions of velocity and concentration
fields sampled at well-separated spatial points scale according to canonical dimensional
predictions. In particular, the scaling laws (14) and (15) correspond to an ultraviolet-and
an infrared-stable fixed point of the renormalization group transformation respectively
describing the dissipative and inertial ranges. Extending this analysis to the 2d case
presents extra difficulties. Already in the absence of nonlinearities, the correlation function
is simultaneously logarithmically divergent both in the infrared and in the ultraviolet.
The Ekman term in (1) is then needed to decouple infrared degrees of freedom. Once
this is done, dimensional analysis shows that the renormalization constants (16) are not
sufficient to reabsorb all terms divergent with the ultraviolet cutoffs in the perturbative
solution of (1). This is a serious difficulty because direct calculations [2, 69] hint that
ultraviolet renormalization group transformations using non-local counter-terms may lead
to mathematical inconsistencies. In other words, renormalization constants should only
be associated with coupling constants of local interactions in real space. For (1) the
molecular viscosity is the only coupling constant satisfying such a requirement [1, 33, 2].
This difficulty led to a controversy, summarized in [33], about the very possibility of
applying renormalization group methods to 2d turbulence. In [33] it is also argued that
multiplicative ultraviolet renormalization remains consistent to all orders in perturbation
theory if the forcing correlation is modified to include a local (analytic) component:

F αβ(x, mf , Mf ) → F αβ(x, mf , Mf) + F αβ
(local)(x, mf , Mf) (17)
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with

F αβ
(local)(x, mf , Mf ) := F (local)

o

∫
d2p

(2π)2
eip·xΠαβ(p̂)p2χf

(
m2

f

p2
,

p2

M2
f

)
. (18)

From the renormalization group point of view, the replacement is justified by the
observation that the resulting model generates the same relevant couplings as the original
and therefore should fall in the same universality class. The merit of (17) is to provide

through ao := F
(local)
o /ν3 the zeroth order of the extra renormalization constant:

Za :=
ao

a
(19)

needed to reabsorb all the remaining explicit dependence on Mf in the perturbative
expansion of correlation functions of the velocity field. As a consequence, [33] predicts
that the isotropic energy spectrum of the velocity field

E[v](p) :=

∫
d2q

(2π)2
δ(q − p)

∫
d2x eiq·x ≺ v(x, t) · v(0, t) � (20)

admits the expression

E[v](p) = ε1/3

(
Fo

ν3

)2/3

ν2p1−4ε/3R

(
ε,

mf

p
,

(
pb

p

)2−2ε/3
)

. (21)

In (21) the wavenumber

pb ∝
( ε

ν3τ 3

)1/(6−2ε)

(22)

signals whether at small scales dissipation is mainly due to friction (p � pb) or to
molecular viscosity (p � pb). The function R has a regular expansion in ε for fixed
pb. The infrared scaling of (21) is then determined by the behavior of R in the limit
p ↓ 0. This limit is inquired within the renormalization group formalism by the so-called
operator product expansion. The outcome [33] is that the energy spectrum admits the
same infrared asymptotics as in dimensions higher than two:

E[v](p) ∼ p1−4ε/3. (23)

It is worth emphasizing that the above results were derived in [33] using the vorticity
representation of the velocity field which holds only in 2d. As a further check, in [34, 32]
the same results were recovered by analytic continuation of (1) in the limit d ↓ 2. In [32]
the analysis extends to the scaling properties of the concentration field and gives

E[θ](p) :=

∫
d2q

(2π)2
δ(p − q)

∫
d2x eip·x ≺ θ(x, t)θ(0, t) �∼ p1+(2ε/3)−2h (24)

in agreement with the dimensional prediction (15). In summary, according to the
renormalization group analysis of [33, 34, 32], in 2d as in 3d the scaling properties of (1)
and (3) differ for ε tending to zero from those of fully developed turbulence. In particular,
inverse cascade-like scaling is attained only for ε = 2 and direct cascade-like at ε = 3. In
the following section we will argue that these results are in contradiction with those that
a phenomenological theory à la Kraichnan would suggest.
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4. Phenomenology à la Kraichnan

Our starting point is the Kármán–Howarth–Monin equation [29]:

1
2
∂μ ≺ δvμ(x, t)||δv(x, t)||2 �

=

(
∂t +

2

τ

)
≺ vα(x, t)vα(0, t) � + 2ν ≺ ∂μvα(x, t) ∂μvα(0, t) � −F α

α (x)

(25)

and the analogous expression for the scalar field:

1
2
∂μ ≺ δvμ(x, t) [δθ(x, t)]2 �

= ∂t ≺ [δθ(x, t)]2 � + 2κ ≺ ∂μθ(x, t) ∂μθ(0, t) � −G(x). (26)

In (25) and (26) the notation is

δvμ(x, t) := vμ(x, t) − vμ(0, t) δθ(x, t) := δθ(x, t) − δθ(0, t). (27)

The scaling predictions of Kraichnan’s theory stem from the asymptotic solution of (25)
under the following three assumptions [7]:

(i) velocity correlations are smooth at finite viscosity and exist in the inviscid limit even
at coinciding points,

(ii) even in the absence of large scale friction (i.e. τ = ∞) Galilean invariant functions,
and in particular structure functions, reach a steady state,

(iii) no dissipative anomalies occur for the energy cascade.

The assumptions (i) and (ii) imply that the two-point correlation in the absence of Ekman
friction does not reach a steady state:

≺ vα(x, t)vα(0, t) �= λt − 1
2
≺ ||δv(x, t)||2 � + · · · (τ = ∞) (28)

the constant λ being the asymptotic growth rate. By (iii) energy dissipation in (25)
satisfies

{lim
ν↓0

lim
x↓0

− lim
x↓0

lim
ν↓0

}ν ≺ ∂μvα(x, t)∂μvα(0, t) �= 0. (29)

This latter hypothesis is distinctive of two-dimensional turbulence: in three and higher
dimensions the limits are not expected to commute for fully developed turbulence. If the
bulk of the energy injection IE occurs around a wavenumber pf and viscosity and friction
are such that the adimensional parameter

R =
IEτ

2

ν
� 1 (30)

plays the role of a large Reynolds number then the three hypotheses yield an inverse
cascade for wavenumbers p in the range pτ � p � pf with pτ = (IEτ

3)−1/2 and a direct
cascade for pf � p � p̄τ with p̄τ = (ντ)−1/2 = pτ/R1/2 [5, 6]. Note that the Kolmogorov
scale pK =: (IE/ν

3)1/4 = pτ/R3/4 is always smaller than the dissipation scale set by the
Ekman friction. We show below how the same arguments can be adapted to a power-law
forcing.
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4.1. Inverse cascade: ε < 2

By (9) and (13) the energy and the enstrophy input are in this case dominated by the
ultraviolet cutoff Mf . Neglecting mf , the trace of the forcing correlation admits the
asymptotic expansion (see appendix A for details)

F α
α (x, 0, Mf) =

⎧⎪⎪⎨
⎪⎪⎩

M4−2ε
f

{
IE(0, 1) − IZ(0, 1)(Mfx)2

2
+ · · ·

}
Mfx � 1

41−εΓ (2 − ε)

πΓ(ε − 1)

Fo

x4−2ε
Mfx � 1

holding for 0 < ε < 2. Comparison with the renormalization group results is possible
in the infrared region, Mfx � 1. In order to extricate the corresponding asymptotics of
the third-order structure function, it is convenient to consider first the quasi-stationary
case for τ tending to infinity. By hypotheses (i) and (iii) [5], the asymptotic growth rate
of (28) in the inviscid limit is equal to the energy injection

λ = M4−2ε
f IE(0, 1) := M4−2ε

f F 

o . (31)

By (25) the growth rate sustains the structure function at scales Mfx � 1:

≺ δvμ(x, t)||δv||2(x, t) �= F 

o M4−2ε

f xμ

{
1 − 41−εΓ (2 − ε)Fo

πΓ(ε)F 

o (Mfx)4−2ε

+ · · ·
}

. (32)

In the presence of the Ekman friction (τ < ∞) (25) reaches a steady state. In such a case
the energy injection is balanced by the velocity correlation which, far from the infrared
cutoff pτ = (FoM

4−2ε
f τ 3)−1/2, is expected to take the form

≺ vα(x, t)vα(0, t) �=
τF 


0 M4−2ε
f

2
{1 − c1(pτx)ζ2 + · · ·} (33)

with c1 a pure number and ζ2 to be determined by a self-consistency condition. The
asymptotics of the structure function acquires a correction

≺ δvμ(x, t)||δv||2(x, t) �

= F 

o M4−2ε

f xμ

{
1 − 2c1(pτx)ζ2

(2 + ζ2)
− 41−εΓ (2 − ε)Fo

πΓ(ε)F 

o (Mfx)4−2ε

+ · · ·
}

. (34)

Some remarks are in order. The constant flux solution dominates for

1

Mf

� x � (FoM
4−2ετ 3)1/2. (35)

In this range the renormalization group prediction clearly appears as a sub-leading
correction. Similarly, the two-point correlation adds a further sub-leading term associated
with the exponent ζ2. Dimensional considerations yield for ζ2 the value 2/3 whence a −5/3
exponent follows for the energy spectrum. The sign of the constant flux term stemming
from (32) and (34) is positive so describing energy transfer to larger scales. The conclusion
is of an inverse cascade taking place above the forcing ultraviolet cutoff. In such a case,
the study of the statistics of the passive scalar should recover the results of [11]. A priori
inspection of (26) allows one to distinguish at least two sub-cases.
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4.1.1. Scalar field in the inverse cascade and small scale forcing h < 2. For h < 2 the injection
of scalar fluctuations is concentrated in the ultraviolet (thermal stirring). No dissipative
anomaly is expected. The Kármán–Howarth–Monin equation (26) yields

≺ δvμ(x, t) [δθ(x, t)]2 �� −41−hΓ (2 − h) Gox
μ

πΓ(h)x4−2h
(36)

in the scaling range

m̃ =
{
m−1

f , m−1
g

}
� x � min

{
M−1

f , M−1
g

}
:= M̃. (37)

Inferences about the correlation functions of the scalar field can be barely drawn from
crude dimensional considerations. Accordingly, one has

E[θ](p) ∼ ≺ [δθ (p/p2, t)]
2 �

p1−1/3
∼ p(7−6h)/3 (38)

which differs from the one stemming from the scaling dimension dθ given in (15) and
supported by the renormalization group calculations of [32]. In particular, whilst (15)
recovers equipartition scaling only for (ε, h) = (0, 0), (38) yields a scaling linear in
wavenumber space at h = 2/3. This may indicate the breakdown for h < 2/3 of (38)
and the onset of an equipartition-type scaling for the spectrum of the scalar field, see
appendix B for quantitative modeling of the phenomenon.

4.1.2. Scalar field in the inverse cascade and large scale forcing h > 2. In this regime, the
injection of the scalar field is dominated by the infrared cutoff. Physically the situation
may be assimilated to turbulent stirring. The Kármán–Howarth–Monin equation for
mgx � 1 reduces to

1
2
∂μ ≺ vμ(x, t) [δθ (x, t)]2 �� −Gom

4−2h
g {γ̄h−2 + (mgx)2h−4γ̄0 + (mgx)2γ̄h−1 + · · ·}. (39)

The coefficients of the forcing expansion are specified by the formulae of appendix A
by identifying γ with the function φ thereby defined. Equation (39) points at a direct
cascade of the scalar field with sub-leading corrections due to the power-law forcing. The
dimensional prediction for the spectrum of the scalar field is Obukhov–Corrsin’s [29]

E[θ](p) ∼ p−5/3. (40)

The numerical experiments of [11] support Obukhov–Corrsin’s scaling in this regime.

4.2. Local balance: 2 < ε < 3

For 2 < ε < 3 the injection of the scalar field is dominated by the infrared cutoff mf . The
quasi-steady-state solution for vanishing Ekman friction yields

λ = m4−2εIE(1, 0) := Fom
4−2ε
f φε−2. (41)

Correspondingly, the scaling range is set by the condition mfx � 1 alone and (25) becomes

1
2
∂μ ≺ δvμ(x, t)||δv(x, t)||2 �= λ − Fom

4−2ε
f {φε−2 + (mfx)2ε−4φ0 + (mfx)2φε−1 + · · ·}.

(42)
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As the first two terms on the right-hand side of (42) cancel out, the third-order structure
function admits the asymptotic expression

≺ δvμ(x, t)||δv(x, t)||2 �� −Fox
μx2ε−4

{
φ0

ε − 1
+

(mfx)6−2εφε−1

2
+ · · ·

}
(43)

with φ0 < 0 (see appendix A). The steady state solution in the presence of Ekman friction
can be discussed as in section 4.1 and introduces in such a case only sub-leading terms.
The cancellation in (42) was argued in [5]–[7] to underlie the direct cascade for standard
turbulent forcing. The difference here is that power-law forcing dominates the scaling. In
this range, the solution of (25) validates the dimensional prediction (15). The agreement
extends to the scalar field with two provisos:

(i) h < 2: the threshold for equipartition scaling is h
 = ε/3 > 2/3:

(ii) h > 2: the forcing becomes dominated by the infrared cutoff. Correspondingly, a
‘freezing ’ of the scaling dimensions at the value for h = 2 may be expected [28, 1].

In summary, the expected spectra are

E[v](p) ∼ p1−4ε/3 and E[θ](p) ∼

⎧⎪⎨
⎪⎩

p, 0 < h < ε
3

p1+(2ε/3)−2h, ε
3

< h < 2

p−3+2ε/3, h > 2.

(44)

It should be noted that in this regime for ε/3 < h < 2 the predictions of the
renormalization group and of the phenomenological theory coincide.

4.3. Direct cascade: ε > 3

For ε > 3 both energy (9) and enstrophy (13) injection are dominated by the infrared
cutoff. The analysis of the Kármán–Howarth–Monin equation under (i), (ii) and (iii) in
the quasi-steady-state follows the same lines as in previous section 4.2. The second term
in the square brackets of (42) now dominates scaling:

≺ δvμ(x, t)||δv(x, t)||2 �� −Fox
μx2m6−2ε

f

{
φε−1

2
+

(mfx)2ε−6φ0

ε − 1
+ · · ·

}
. (45)

However, (45) is just the simplest of the possible scenarios. A detailed analysis of
the direct cascade stirred by turbulent forcing [6] indicates that scaling in the steady
state brought about by an Ekman friction may well be characterized by non-universal
exponents, depending upon the value of τ . Subsequent numerical investigations [57, 13, 66]
validate non-universal exponents in the steady state. A further inference drawn in [6] is
the presence of logarithmic corrections to the quasi-steady-state structure function. For
the scope of the present work it is sufficient to observe that the phenomenological theory
predicts for ε > 3 the ‘freezing’ of the scaling dimension dv to a value close to the ‘naive’
direct cascade (dv = dx). The implication for the energy spectra by dimensional arguments
is

E[v](p) ∼ p−3+··· and E[θ](p) ∼

⎧⎪⎨
⎪⎩

p, 0 < h < 1

p3−2h+···, 1 < h < 2

p−1+···, h ≥ 2.

(46)
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In (46) the ‘. . .’ denote non-universal and/or intermittent correction, the presence whereof
is suggested by numerical investigations of the direct cascade stirred by turbulent
forcing [57, 13, 66].

Observation

In the above discussion we omitted to discuss the properties of the flow of (1) and (3)
at scales Mfx � 1. The reason for doing so, in the spirit of renormalization group and
consistently with the numerical experiments of the ensuing section, is that the dynamics
is strongly suppressed by dissipation effects for scales below Mf .

5. Numerical experiments

In order to compare the renormalization group predictions of section 3 with those of the
phenomenological theory à la Kraichnan expounded in section 4, we performed numerical
simulations of the Navier–Stokes equation for the vorticity field (10) and the advection–
diffusion equation for the scalar field (3) with a fully dealiased pseudo-spectral method [18]
in a doubly periodic square domain of size L = 2π at resolution N2 = 10242. Dealiasing
cutoff is set to kt = N/3. Time evolution was computed by means of a second-order
Runge–Kutta scheme, with implicit handling of the linear friction and viscous terms. As
is customary (see, e.g., [57, 66]) we added to (1) a hyperviscous damping (−1)p−1νp−1∂

2pv.
This is equivalent to a Pauli–Villars regularization, the use whereof is well justified in
renormalization group calculations (see, e.g., [70, 33]). The integration time has been
carried out for 20 large eddy turn-over times after the velocity fields have reached the
stationary state. The stochastic forcing is implemented in Fourier space by means of
Gaussian, white-in-time noise as in [13] but with variance determined according to (7).

In figure 1 we show the energy spectrum E[v] for ε = 0. The numerical spectrum
exhibits good agreement with the phenomenological theory of section 4 with a scaling
exponent dE = −5/3dp within numerical accuracy.

Such an exponent is very far from the equipartition-like scaling dE = dp which is
the starting point for the renormalization group analysis. The energy flux validates the
interpretation of the −5/3 spectrum as brought about by an inverse cascade. The energy
flux

ΠE(p, mf ) =

∫ p

mf

d2q

(2π)2
Re

∫
d2x eiq·x ≺ v̌α(−q, t)(vβ∂βvα)(x, t) � (47)

where v̌α denotes the Fourier transform of vα, is negative and constant in the scaling range
(see the inset of figure 1), so signaling the presence of an inverse cascade.

Breakdown of the marginality assumption at ε = 0 is confirmed also by the
concentration spectra E[θ] shown in figure 2: at h = 1 a spectrum E[θ] ∼ p1/3 well fits the
numerical results, which definitely rule out the E[θ] ∼ p−1 prediction of the renormalization
group theory (24). Furthermore, and in agreement with section 4.1, the spectrum of the
scalar field undergoes a transition at h = 2. Above that value the scaling exponent freezes
to the value −5/3 corresponding to a direct cascade, in agreement with the results of [11].
Figure 2 illustrates the phenomenon for h = 2.5. It should be noted that, for h = 0 an
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Figure 1. Kinetic energy spectrum for ε = 0. Inset: energy flux ΠE. Parameter
values are: mf = 1,Mf = 341, ν3 = 10−16, τ−1

2 = 102, F0 = 4 × 10−10.

Figure 2. Scalar spectra for ε = 0 and various values of h. Parameters values
are: mg = 1,Mg = 341, κ3 = 10−16, G0 = 4×10−10 for h = 0, mg = 1,Mg = 341,
κ3 = 10−16, G0 = 1.6 × 10−5 for h = 1 and mg = 1,Mg = 341, κ0 = 5 × 10−4,
G0 = 2.5 × 10−1 for h = 2.5. Parameters for the velocity field as in figure 1.

equipartition-type scaling (i.e. linear in wavenumber) is observed for the spectrum of the
scalar field. It is worth stressing that this is not sufficient to infer equipartition of the
full statistics of the scalar field. It is known in analytically tractable cases of turbulent
advection of scalar fields [27, 20, 21, 52] that equipartition-type scaling of the two-point
correlation may well coexist with highly intermittent statistics even in the decay range of
a scalar field.
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Figure 3. Kinetic energy spectrum E(k) for ε = 2.5. Inset: energy flux ΠE

(circles) multiplied by minus unity, and enstrophy flux ΠZ (triangles). The lines
represents the injection spectra IE (dashed line) and IZ (dotted line). Parameters
values are: mf = 1,Mf = 341, ν3 = 10−17, τ−1

2 = 103, F0 = 1.

In agreement with the phenomenological theory, for 2 < ε < 3 no cascade is observed.
Figure 3 illustrates the situation at ε = 2.5. The energy injection spectrum, defined
as IE(k) =

∫ ∞
k

dp p3−2εχf(m
2
f/p

2, p2/M2
f ) is dominated by IR contributions, while the

enstrophy injection spectrum IZ(k) =
∫ k

0
dp p5−2εχf (m2

f/p
2, p2/M2

f ) is still ultraviolet-
divergent (see the inset of figure 3). In this situation the steady state is characterized
by a scale-by-scale balance between the fluxes and the injection spectra. The resulting
energy spectrum scales as E[v](p) ∼ p1−4ε/3 (see figure 3). The spectra for the passive
scalar shown in figure 4 are in agreement with the prediction (44).

Finally, figure 5 shows the onset of a direct cascade for ε > 3. The enstrophy flux:

ΠZ(k, mf) =

∫ k

mf

d2q

(2π)2
Re

∫
d2x eiq·x ≺ ω̌(−q, t)(vβ∂βω)(x, t) � (48)

is approximately constant and positive (indicating transfer towards smaller spatial scales)
in the numerically resolved scaling range (see the inset of figure 5). It should be emphasized
that numerical evidence from [57, 66, 13] uphold the non-universal dependence of the
kinetic energy spectrum upon the Ekman friction in the direct cascade regime. Since
the analysis of such effects lies beyond the scope of the present work we replaced for ε > 2
the Ekman friction with an hypo-dissipative term (−1)q+1τ−1

q ∂−2qv, which is expected to
suppress the aforementioned non-universal corrections to the spectrum [46].

6. Discussions and conclusions

Our numerical experiments support, without possible ambiguity, the scenario set by
Kraichnan’s phenomenological theory. The physically relevant order parameters to
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Figure 4. Scalar spectra for ε = 0 and various values of h. Parameter values are:
mg = 1,Mg = 341, κ3 = 10−16, G0 = 4 × 10−10 for h = 0, mg = 1,Mg = 341,
κ3 = 10−16, G0 = 1.6 × 10−5 for h = 1 and mg = 1,Mg = 341, κ0 = 5 × 10−4,
G0 = 2.5 × 10−1 for h = 2.5. Parameters for the velocity field as in figure 3.

Figure 5. Kinetic energy spectrum for ε = 4. Inset: enstrophy flux ΠZ .
Parameter values are: mf = 6,Mf = 240, ν3 = 10−18, τ−1

1 = 2, F0 = 1.

describe the qualitative behavior of (1) and (3) are the total energy (9) and enstrophy (13)
injections. Whenever they coherently act on small (large) scales an inverse (direct) cascade
is observed. In the intermediate case 2 < ε < 3 no cascade takes place and a local balance
scaling takes place. The renormalization group scaling exponents are for ε, h < 2 at most
a sub-leading correction to the inverse cascade scaling. It remains to be clarified the
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origin of the discrepancy between the two theories. The renormalization group analysis
of [33, 32, 34] is very thorough and satisfies all the self-consistency requirements that are
known to produce correct scaling predictions in the theory of critical phenomena. Thus
any trivial explanation of the discrepancy can be safely ruled out. The indication of the
existence of a constant flux solution stems from the Kármán–Howarth–Monin equation.
In the renormalization group language the relations closest to (25) are those satisfied
by the composite operator algebra which includes the energy dissipation operator (see,
e.g., section 2.2 of [1]). One may speculate that non-locality of forcing plays a role different
than in 3d in determining the scaling dimensions of the elements of the operator algebra.
It is, however, difficult to see how to consistently formalize this observation. One scenario
that deserves to be further investigated is, in our opinion, the following. Perturbative
renormalization implies the assumption that the infrared-stable fixed point governing the
scaling regime emerges from a bifurcation at marginality from a Gaussian fixed point. Such
an assumption is usually verified in critical phenomena but is not a necessary consequence
of a general non-perturbative theory. In particular, there are examples of field theories
where it is possible to give evidence that scaling is dominated by a fixed point emerging
at marginality from bifurcations from non-perturbative, non-Gaussian fixed points. A
concrete case is discussed in [49, 48]4. There, a model of wetting transition indicates a
scenario which could apply also to 2d turbulence. The scaling predictions associated with
an infrared-stable fixed point captured by perturbative renormalization group analysis
is numerically seen to be dominated by those associated with a second fixed point not
bifurcating from the Gaussian fixed point at marginality. The existence of this fixed point
can be exhibited only by a non-perturbative construction of the renormalization group
transformation. The price to pay, however, is the introduction of truncations of the Wilson
recursion scheme which cannot be a priori fully justified. If we accept such a point of
view, the existence of the Kármán–Howarth–Monin equation should be interpreted as an
a priori indication of the existence of a non-perturbative fixed point.
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Appendix A. Asymptotics of the forcing correlation

Consider the scalar correlation

F (x, m, M) = Fo

∫
ddp

(2π)d

eip·x

pd+η
χ

(
m2

p2
,

p2

M2

)
(A.1)

with

χ(0, 0) = 1. (A.2)

4 We thank L Peliti for drawing our attention to this point and to [49, 48].
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In order to extricate the asymptotics in the range m � p � M two cases should be
distinguished depending upon the sign of η:

• If η < 0 the integral is infrared-and ultraviolet-convergent at finite point separations
in the absence of cutoffs:

F (x, m, M) � Fo

∫
ddp

(2π)d

eip·x

pd+η
=

Ωd

(2π)d

xηΓ(d/2)Γ(−η/2)

21+ηΓ((d + η)/2)
(A.3)

with Ωd the solid angle in d dimensions.

• If η > 0 (A.1) is convergent only if the infrared cutoff is retained:

F (x, m, M) � F (x, m,∞) = Fo

∫
ddp

(2π)d

eip·x

pd+η
χ

(
m2

p2
, 0

)
. (A.4)

The integral can be estimated by inverting its Mellin representation with the help of
the Cauchy theorem (see, e.g., [54]):

F (x, m,∞) = Fo

∫ Re ζ+ı∞

Re ζ−ı∞

dζ

(2πı)
xη(mx)2ζφ(ζ), Re ζ < −η

2
. (A.5)

The holomorphic function

φ(ζ) :=
Ωd

(2π)d

Γ(d/2)Γ(−(2ζ + η)/2)

21+2ζ+ηΓ((d + 2ζ + η)/2)

∫ ∞

0

dw

w

χ(w2, 0)

wζ
(A.6)

is by hypothesis analytic at least in a stripe for Re ζ < −η/2. Furthermore, by (A.2),
the integral in (A.6) generates a simple pole for ζ = 0. The Cauchy theorem yields
for mx � 1 the asymptotics

F (x, m,∞) = Fom
−η

{
φ̄−η/2 + (mx)ηφ̄0 + (mx)2φ̄1−η/2 + · · ·

}
(A.7)

having used the notation

φ̄a := − lim
ζ↑a

(ζ − a)φ(ζ). (A.8)

Appendix B. Large scale zero-mode and power-law forcing in the Kraichnan model
of advection of a concentration field

We refer the readers for definitions and details on the large scale decay properties of
the Kraichnan model to [27, 20, 21, 52]. The energy spectrum of the Kraichnan model is
exactly known. In 2d it takes, modulo irrelevant constant factors, for isotropic forcing the
form

E[θ](p) =

∫ ∞

0

dρ

ρ

ρB1(pρ)

κ + Dρξ

∫ ρ

0

dσ

σ
σ2G(σ, mg, Mg) (B.1)

with Bη(x) the Bessel function of order η, D the eddy diffusivity of the advecting velocity
field and G given by (8). The Hölder exponent ξ is a free parameter in the model.
Turbulent advection corresponds to ξ = 4/3. From (B.1) it is straightforward to check
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that

E[θ](p) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p

∫ ∞

0

dρ

ρ

ρ2

κ + Dρξ

G̃o

ρ2−2h
=

( κ

D

)2h/ξ G̃oπp

κξ sin((2hπ)/ξ)
, h < ξ

2

p1+ξ−2h

∫ ∞

0

dρ

ρ

G̃oB1(ρ)

Dρ1+ξ−2h
=

G̃op
1+ξ−2hΓ(h − ξ/2)

22+ξ−2hDΓ(2 − h + ξ/2)
, h > ξ

2
.

(B.2)

G̃o is a dimensional constant, the value of which is irrelevant for the present considerations.
Setting ξ = 4/3 the results of section 4.1 of the main text are recovered. The direct cascade
results (46) are recovered instead by setting ξ = 2. The asymptotics (B.2) hold under the
assumption of infinite integral scale m−1

g of the spatial forcing correlation. In the language

of [20, 21] this means that the ‘charge’ Ǧ(0, 0, Mg) is vanishing. For h > 2 the forcing
becomes infrared-dominated. At scales mgx � 1

E[θ](p) ∼ G(0, mg,∞)pξ−3

∫ 1

0

dρ

ρ
ρ3−ξ B1(ρ)

D
(B.3)

whilst in the opposite range mgx � 1, for Ǧ(0, mg,∞) > 0:

E[θ](p) ∼ Ǧ(0, mg,∞)pξ−1

∫ ∞

0

dρ

ρ
ρ1−ξ B1(ρ)

D
. (B.4)
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