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Enhancement of drag and mixing in a dilute solution of rodlike
polymers at low Reynolds numbers
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We study the dynamics of a dilute solution of rigid rodlike polymers in a viscous fluid at
low Reynolds numbers by means of numerical simulations of a simple rheological model.
We show that the rotational dynamics of polymers destabilizes the laminar flow and causes
the emergence of a turbulent-like chaotic flow with a wide range of active scales. This
regime displays an increased flow resistance, corresponding to a reduced mean flow at fixed
external forcing, as well as an increased mixing efficiency. The latter effect is quantified by
measuring the decay of the variance of a scalar field transported by the flow. By comparing
the results of numerical simulations of the model in two and three dimensions, we show that
the phenomena observed are qualitatively independent on the dimensionality of the system,
but the effects of polymer are, in general, stronger in two dimensions. This dimensional
effect is explained in terms of the different rotational degrees of freedom of the rods.
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I. INTRODUCTION

The addition of small amounts of polymers in a fluid causes dramatic effects on the mechanical
properties of the solution. At high Reynolds numbers, it is well known that polymers reduce the
turbulent drag compared to that of the solvent alone [1]. The discovery of the phenomenon of drag
reduction motivated the efforts of the scientific community to investigate the dynamics of dilute
polymer solutions (see, e.g., the reviews in Refs. [2–4]). More recently, it has been discovered that
polymer additives alter significantly also flows at low Reynolds numbers. In this case, even though
the Reynolds stress is negligible, the elastic stress gives rise to instabilities when the elasticity of
polymers is large enough. The growth of these instabilities eventually generates a spatiotemporal
chaotic regime which is called “elastic turbulence” [5]. In this regime, the mixing efficiency of the
flow is strongly enhanced, because the velocity field develops chaotic structures at small scales,
and the flow displays a power-law energy spectrum [6–8]. This phenomenon is extremely useful to
increase the mixing in microfluidic applications, in which the Reynolds numbers are typically very
low and the diffusive mixing is weak.

Although most of the studies of these phenomena have been performed with elastic polymers,
the described effects can originate also from rigid rodlike polymers. One advantage of using rodlike
polymers in applications is that the degradation due to large strains is weaker for rodlike polymers
than for elastic polymers [9]. At large Reynolds numbers, it has been shown that the drag reduction
obtained by elastic- and rigid-polymers is remarkably similar [10–14]. At small Reynolds numbers,
recent numerical studies performed in two dimensions demonstrated that the addition of rigid
polymers originates a chaotic regime similar to elastic turbulence [15] characterized by enhanced
mixing [16].
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In general, the chaotic dynamics at low Reynolds number is expected to be qualitatively similar
in two-dimensional (2D) and three-dimensional (3D) flows. This is at odds with the high-Reynolds
regime, in which the dimensionality of the flow has dramatic consequences, namely the reversal of
the turbulent cascade of kinetic energy [17,18]. The possibility to use 2D studies for the modeling
of 3D applications offers considerable advantages, such as the reduction of computational costs
and the simplification of the experimental setup. Nonetheless, changing the dimensionality of the
system can produce quantitative discrepancies between 2D and 3D results. As an example, recent
numerical studies of Rayleigh-Taylor convection in porous media observed density plumes more
elongated and thinner in 2D than in 3D. This difference causes a faster growth of the mixing layer
in 2D [19,20]. The comparison of 3D and 2D studies is therefore crucial to reveal quantitative effects
of the dimensionality on low Reynolds number flows.

For this purpose, here we extend the investigation of the chaotic regime in viscous solutions of
rodlike polymers to 3D flows. We present the results of 3D numerical simulations of the rheological
model considered in Ref. [15] and we compare them with 2D simulations performed with identical
parameters. At a qualitative level, we find that the phenomenology of 2D and 3D systems is similar.
Augmenting the concentration of polymers we find an increase of the flow resistance, quantified by
the friction factor, as well as an enhanced mixing efficiency. The latter is measured by the decay rate
of the variance of a scalar field transported in the flow. Nonetheless, an accurate comparison reveals
remarkable quantitative differences between 3D and 2D simulations. In particular, we show that the
effects of polymers in 2D is stronger than in 3D. We provide an interpretation of this dimensional
effect in terms of the rotational degrees of freedom of polymers. We also discuss the possibility
of a mapping between the 2D and 3D results, which is obtained by rescaling the concentration of
polymers.

The paper is organized as follows. In Sec. II we present the Eulerian model for the dilute rods
suspension. The details of the numerical simulations are reported in Sec. III. In Sec. IV we discuss
the results of 3D simulations and the comparison with 2D simulations. Section V is devoted to the
conclusions.

II. EULERIAN MODEL FOR A DILUTE RODS SUSPENSION

We consider an Eulerian model for a dilute suspension of inertialess rodlike polymers transported
by an incompressible velocity field u(x, t ). The polymer phase is described by a unit-trace symmet-
ric tensor field Ri, j (x, t ) = 〈nin j〉V , which is defined as the average of the orientation vectors n
of individual polymers over an infinitesimal volume element V at position x and time t [21]. The
dynamics of the suspension is determined by the following coupled equations:

∂t ui + uk∂kui = −∂i p + ν∂2ui + ∂kσik + fi, (1a)

∂t Ri j + uk∂kRi j = (∂kui )Rk j + Rik (∂ku j ) − 2Ri j (∂l uk )Rkl , (1b)

where p(x, t ) is the pressure, ν is the kinematic viscosity of the solvent fluid, and f (x, t ) is the
body-force which sustains the flow. The form of the polymer stress tensor σi j is based on a quadratic
approximation proposed by Doi and Edwards [21] σi j = 6νηRi j (∂l uk )Rkl . The intensity of the
polymer feedback on the flow is determined by the dimensionless parameter η which is proportional
to the polymer concentration. We remark that Eq. (1b) can also contain a term produced by the
orientational diffusion of polymers [21]. The effects of Brownian rotations of the rods can be safely
disregarded when the characteristic Brownian rotational time tB is much larger than the dynamical
rotational time tL determined by the velocity gradients [22] (i.e., when the rotational Péclet number
Pe = tB/tL is large). For an elongated particle of length � and aspect ratio r in a solvent with density
ρ at temperature T , the Brownian time is given by tB = (πρν�3)/{3kBT [ln(r) − 0.8]} where kB is
the Boltzmann constant [21,23]. The dynamical time can be estimated as tL ≈ (L2/ν)Re−1, where
L is the characteristic scale of the flow and Re is the Reynolds number. As an example, for an
experiment in a microchannel of width L ≈ 1 mm at Re ≈ 1, with rigid fibers of length � = 5 μm
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and aspect ratio r = 10 in water at T = 300 K, the dynamical time tL ≈ 1 s is much smaller than the
Brownian time tB ≈ 20 s. Having these applications in mind, in the following we omit the Brownian
term. We also remind that numerical simulations at large Reynolds numbers have shown that model
(1) is able to reproduce the main features of turbulent drag reduction in channel flows [12,14,24,25].

We focus here on a 3D viscous shear flow sustained by the Kolmogorov body force f (x) =
[F cos(Kz), 0, 0], where F is the amplitude and K is the wave number of the force. In the absence
of polymers (η = 0) this force produces the stationary laminar solution u(x) = [U0 cos(Kz), 0, 0]
with U0 = F/(K2ν), which is linearly stable if the Reynolds number Re = U0/(νK ) is smaller than
the critical value Rec = √

2 [26]. This flow has been first proposed by Kolmogorov as a model to
understand the transition to turbulence. It displays the interesting feature that the mean velocity
profile remains monochromatic even in the turbulent regime, i.e., ū(z) = [U cos(Kz), 0, 0] [27].
Here and in the following the overbar ¯[·] denotes the average over time t and over the x and y
coordinates. In analogy with the case of channel flows, the presence of a nonvanishing mean velocity
profile allows us to define the turbulent drag coefficient f = F/(KU 2) in terms of the amplitude U
of the mean flow, which in the turbulent regime is smaller than the laminar solution U0. This property
has been exploited to study the dependence on Re of the turbulent drag in bulk flows [27], and to
investigate how the drag is affected by the presence of elastic polymers [28] or inertial particles
[29].

In the presence of rodlike polymers (η > 0), the stationary solution of Eq. (1) requires, for the
conformation tensor, Ri3 = R3i = 0 and ∂xRi j = 0, that is, polymers are oriented in the x-y plane and
their orientation can depend on the y and z coordinates only. For the velocity field, the stationary
solution is the laminar Kolmogorov flow [U0 cos(Kz), 0, 0] with amplitude U0 = F/(K2ν) indepen-
dent on the polymer concentration. This is remarkably different from the case of the viscoelastic
model, in which polymers affect the amplitude of the laminar flow [28].

III. NUMERICAL SIMULATIONS

We performed a set of numerical simulations of Eq. (1) on a triply cubic periodic domain of
size L = 2π . Simulations are performed by using a pseudospectral code which discretizes the
velocity and conformation tensor fields on a regular grid of N3 = 2563 gridpoints. Since Eq. (1)
contains terms which are cubic in the fields, the code performs a 1/2 dealiasing at each time
step [30]. Time integration uses a fourth-order Runge-Kutta scheme with implicit integration of
the linear dissipative terms and the time step is fixed by the resolution of the rotational dynamics
of the conformation tensor. In all the simulations the viscosity is set to ν = 1 and the flow is
sustained by the Kolmogorov force f (x) = [F cos(Kz), 0, 0], with forcing wave number K = 4
and forcing amplitude F = ν2K3, such that, in absence of polymers (η = 0), the laminar flow is
stable with Reynolds number Re = U0/(νK ) = 1. The feedback coefficient is varied from η = 5
to η = 8. Experimentally this corresponds, for the case of an aqueous solution of xanthan gum, to
concentrations in the range of 73–102 wppm [25]. The values of η considered are small enough to
be in the dilute regime but also large enough to ensure that the system is far from the transition from
the laminar to the chaotic flow observed in [15]. A diffusive term κ∂2Ri j with κ = 4 × 10−3 is added
to Eq. (1b) to improve the numerical stability [31]. All the results are made dimensionless by using
the forcing wave number K , the laminar velocity amplitude U0 and the laminar time T0 = 1/(KU0).
For a quantitative comparison between the 2D and the 3D versions of the model, we also performed
additional numerical simulations of Eq. (1) in two dimensions with the same parameters of the 3D
runs.

At time t = 0 we initialize the velocity field to the fixed-point laminar solution while the compo-
nents of the tensor R are distributed randomly with isotropic distribution. The time evolution of the
kinetic energy E = 1

2 〈|u|2〉 is shown in Fig. 1 for two simulations with η = 6 and η = 8 (here and
in the following 〈·〉 denotes the average over the whole volume). The injection of polymers strongly
affects the velocity field and the energy is almost reduced to zero. Energy further increases back
to the laminar value (at t � 200T0 in Fig. 1) where polymeric instabilities develop and eventually
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FIG. 1. Kinetic energy E , normalized with the laminar energy E0, for two simulations in 3D with η = 6
(blue dashed line) and η = 8 (red solid line). In both cases the initial condition is the laminar fixed point with
E (0) = E0.

the system reaches a statistically stationary chaotic state (at t � 500T0) with an energy which is
considerably smaller than the one of the laminar flow E0 = 1

2U 2
0 . In this regime, the kinetic energy

displays rapid oscillations whose frequency increases with the polymer concentration, while the
average value of E decreases at increasing η.

For each set of the parameters, we performed three independent simulations with different
realizations of the initial random configuration of the conformation tensor. While the duration of the
initial transient depends on the realization, in the subsequent chaotic regime different realizations
are statistically equivalent and they are averaged to increase the statistical accuracy of the results.
All the results presented are obtained in this statistically stationary regime.

Figure 2 shows three sections of the velocity components ux, uy, and uz in the plane x-z at fixed
y from the simulation with η = 7 in the chaotic regime. The structure of the Kolmogorov flow
remains visible in the ux field, with superimposed irregular fluctuations at small scales. The velocity
fluctuations are clearly evident in the uy and uz fields, where the mean flow is absent. We remark
that the fluctuations in the ux field qualitatively resemble the elastic waves observed in viscoelastic
flows [32,33].

IV. RESULTS

A. Statistics of the velocity

One relevant property of the Kolmogorov flow is that it maintains a monochromatic mean flow
〈ux〉 = U cos(Kz) also in the chaotic and in the turbulent regimes. This feature is confirmed even

FIG. 2. Vertical sections in the x-z plane of the velocity components ux , uy, uz (from left to right) in the 3D
chaotic regime for η = 7. The color scale ranges from −3u′

i (black) to 3u′
i (white), where u′

i are the root-mean-
square (rms) values of the velocity fluctuations.
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FIG. 3. Profiles of the mean velocity 〈ux (z)〉 averaged over x, y and time, in 3D simulations with different
values of η. The solid black line corresponds to the laminar solution of the Newtonian fluid at η = 0.

in the presence of polymers, as shown in Fig. 3 where we plot the average velocity profile from the
simulations at different concentrations. We observe that the amplitude of the mean flow is reduced
with respect to the laminar solution, consistently with what shown in Fig. 1, as a consequence of the
chaotic motion induced by polymers.

It is therefore natural to decompose the velocity field in a mean (monochromatic) component and
fluctuations as

u(x) = U [cos (Kz), 0, 0] + u′(x). (2)

Table I reports the values of the root-mean-square (rms) velocity fluctuations together with the
amplitude of the mean flow and other relevant quantities.

Figure 4(a) confirms that the amplitude of the mean flow is significantly reduced with respect to
the laminar case and that this effect is stronger at increasing values of the concentration parameter
η. The rms values of velocity fluctuations are, on the contrary, weakly dependent on η. We notice
that fluctuations along streamwise direction u′

x are larger than those in the y and z directions and the
fluctuations in the spanwise direction u′

y are much smaller. This suggests that, even in the chaotic
regime, the flow remains approximately two-dimensional.

B. Drag and momentum budget

To better understand the effect of polymers on the mean flow we consider the momentum budget.
By averaging the first component of Eq. (1) over x, y in stationary conditions we obtain the stress

TABLE I. Parameters of the 3D simulations. U is the amplitude of the mean longitudinal velocity, S the
amplitude of the mean Reynolds stress, and 
 that of the mean polymer stress. u′

x , u′
y, and u′

z are the rms values
of the three components of velocity fluctuations. εI is the mean energy input, εν the viscous energy dissipation,
and εp the mean polymer dissipation.

η U S 
 u′
x u′

y u′
z εI εν εp

5 2.87 0.10 4.40 0.64 0.12 0.40 91.9 74.8 17.1
6 2.74 0.10 5.02 0.63 0.13 0.39 87.2 68.6 18.6
7 2.63 0.10 5.57 0.64 0.16 0.39 83.2 63.6 19.6
8 2.48 0.09 6.08 0.69 0.18 0.40 78.8 58.3 20.6
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FIG. 4. Mean velocity profiles U (black diamonds) and components of rms velocity fluctuations (u′
x blue

squares, u′
y green triangles, u′

z red circles) in 3D simulations with different values of η.

budget

∂z�r = ∂z(�ν + �p) + fx, (3)

where �r = uxuz is the Reynolds stress, �ν = ν∂zux the viscous stress, and �p = σxz the polymer
stress. In the statistically stationary state all these quantities have a monochromatic profile

�r = S sin(Kz), �ν = −νKU sin(Kz), �p = −
 sin(Kz), (4)

and therefore Eq. (3) becomes an algebraic equation for the coefficients

SK + νK2U + 
K = F. (5)

The dimensionless version of the momentum budget is obtained by dividing all the terms of Eq. (5)
by KU 2 and defining the friction coefficient f = F/(KU 2), which quantifies the ratio between the
work done by the force and the kinetic energy of the mean flow, the Reynolds stress coefficient
s = S/U 2 and the polymer stress coefficient σ = 
/U 2:

f = 1

Re
+ s + σ. (6)

In laminar conditions we have s = σ = 0 and f = 1/Re. Figure 5 shows that increasing the
concentration of polymers produces a growth of the friction factor with respect to the laminar case
which is mostly due to the increment of the polymer stress and partly to a weaker growth of the
viscous stress. The Reynolds stress remains in all cases negligible, showing that inertial terms do
not contribute to the transfer of momentum.

By definition, the drag coefficient f is linked to the Reynolds number by f = Re0/Re2 where
Re0 = U0/Kν = F/K3ν2. Polymers have therefore two complementary effects: they reduce the
Reynolds number of the flow and increase its resistance. Note that the contribution of the viscous
stress to the increase of the drag coefficient is subdominant (∝ 1/Re) with respect to that of the
polymer stress (∝ 1/Re2). This is clearly shown in Fig. 6 in which the friction factor f is plotted
as a function of Re for the different values of η. Since both f and Re do not depend explicitly
on η, points corresponding to simulations at the same F and ν lie on the line Re0/Re2. The point
at Re = 1 corresponds to the laminar fixed point, which is stable in the absence of polymers. We
remark that this plot is done at fixed forcing F . The different Reynolds numbers are a consequence
of the different mean velocities produced at various η.

The inset of Fig. 6 shows how the effective viscosity νeff ≡ F/(K2U ) increases with the mean
shear rate γ̇ = KU , by changing the amplitude F of the forcing at fixed polymer concentration
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FIG. 5. Friction factor f (black diamonds) normalized viscous stress 1/Re (blue squares), polymer stress
coefficient σ (red circles) and Reynolds stress coefficient s (green triangles), as function of η. Filled symbols
are for the three-dimensional DNS, empty ones are for the two-dimensional DNS.

(data from two-dimensional simulations). In this range of values, the polymer solution displays
shear-thickening behavior.

C. Energy budget

Additional information regarding the effects of polymers on the flow is obtained by the analysis
of the energy budget. By multiplying Eq. (1) by u and integrating over the volume we get the balance
equation for the mean kinetic energy (we note that, unlike the case of elastic polymers, we cannot
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FIG. 6. Friction factor f as a function of Re in the 3D (blue, filled symbols) and 2D (red, empty symbols)
simulations at concentrations η = 5 (squares), η = 6 (circles), η = 7 (triangles), η = 8 (diamonds). The
black asterisk at Re = 1 represents the laminar fixed point at η = 0. The dashed line represents the curve
f = Re0/Re2 while the dotted line is the laminar law f = 1/Re. Inset: effective viscosity νeff as a function of
the mean shear rate γ̇ for 2D simulations with η = 5.
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FIG. 7. Mean values of energy input εI (black diamonds), viscous dissipation εν (blue squares), and
polymer dissipation εp (red circles), as function of η. Filled symbols are for the three-dimensional DNS, empty
ones are for the two-dimensional DNS.

associate a deformation energy to rigid polymers)

d

dt
〈E〉 = εI − εν − εp, (7)

where εI = 〈f · u〉 = FU/2 is the mean energy input, εν = 〈ν|∇u|2〉 the mean viscous dissipation
rate, and εp = 〈σi j∂ jui〉 is an additional dissipation of kinetic energy due to the coupling with
polymers. We remark that the local values of the term σi j∂ jui can be either positive or negative,
meaning that polymers can locally either give or subtract energy from the flow. Nonetheless the
volume average of εp is always negative, indicating that the global effect of polymers is dissipative.
Physically, this is due to the fact that the coupling between rods and the fluid is due to viscous forces
at the molecular scale, whose mean effect is to dissipate a fraction of the kinetic energy [21].

In the statistical steady state, averaging over sufficiently long times, the energy can be considered
constant, and therefore we have the energy balance εI = εν + εp. These quantities are shown in
Fig. 7, normalized with the mean energy input of the laminar flow ε0 = FU0/2. We observe a slight
increase in the polymer dissipation as the concentration coefficient increases, but the main effect of
polymers is a suppression of the energy input provided by the constant forcing as a consequence
of the reduction of the mean flow amplitude. This is consistent with the results plotted in Fig. 1
showing that kinetic energy is reduced at increasing polymer concentration. Figure 7 indicates that
for all values of η, energy is mostly dissipated by viscosity. Therefore, we expect that the small scale
properties of the flow are weakly affected by the polymer concentration.

To investigate in details this point, in Fig. 8 we plot the kinetic energy spectra in stationary
conditions and for the different values of concentration. Note the peak of the spectra at the forcing
wave number K (the only active wave number in the laminar case). We observe very small variations
of the spectrum with η, mostly concentrated at small wave numbers (since the total energy changes
with η). At large wave numbers the spectra display a power law behavior E (k) ∼ k−α with α � 4.8,
an indication of the presence of fluctuations at all scales. The fact that the power spectrum is steeper
than k−3 implies that the velocity field is smooth in this regime, similarly to what observed in elastic
turbulence [5].

D. Mixing properties

The presence of velocity fluctuations over a wide range of spatial scales has a strong influence
on the mixing efficiency of the flow. To address this point we studied the mixing of a passive scalar
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FIG. 8. Time averaged, kinetic energy spectra as a function of wave number from 3D simulations with
different values of η.

by simultaneously integrating the equation for a scalar field θ (x, t ) transported by the velocity field
u obtained from Eqs. (1)

∂tθ + uk∂kθ = D∂2θ, (8)

where D is the molecular diffusivity, which is set to D = 2 × 10−3 in the simulations. The integra-
tion of Eq. (8) is obtained with the same pseudospectral method discussed in Sec. III. It starts at an
arbitrary time in the stationary regime of chaotic flow. We chose a monochromatic initial condition
for θ , with the same periodicity of the mean flow θ (x, 0) = θ0 cos(Kz). In absence of polymers,
with this initial condition the mixing is due exclusively to molecular diffusion because the gradients
of the scalar field ∇θ are orthogonal to the laminar velocity field. In particular, for η = 0 the scalar
field remains monochromatic, while its variance (as well as the variance of its gradients) decays
exponentially as 〈θ2〉 ∝ 〈(∇θ )2〉 ∝ exp(−β0t ), with β0 = 2DK2.

The presence of polymers causes a strong enhancement of the mixing, which is illustrated by the
vertical sections of θ shown in Fig. 9. In particular, we observe the formation of thin scalar filaments,
which rapidly transfer the scalar fluctuations to small dissipative scales. This process strongly
enhances the mixing efficiency with respect to the molecular diffusion. A quantitative measure

FIG. 9. Vertical section in the x-z plane at fixed y = 0 of the scalar field θ for the 3D simulation with η = 8
at different times. From left to right: t = 0, t = 32T0, t = 64T0.
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FIG. 10. Decay of the variance of the scalar field 〈θ2〉 (left panel) and of the scalar gradients 〈∇θ )2〉 (right
panel) for the different values of η in 3D simulations. Solid black line represents the diffusive exponential
decay in absence of polymers.

of the mixing is provided by the temporal evolution of the variance of θ and ∇θ shown in Fig. 10.
Here and in the following, the results presented are averaged over 13 independent simulations of
Eq. (8), starting from the same initial condition θ (x, 0) with different velocity fields. The decay of
〈θ2〉 in the chaotic flow induced by the polymers is much faster with respect to the case η = 0. The
same result is observed for the long-time decay of the variance of scalar gradients 〈(∇θ )2〉, even
though the chaotic advection of the scalar field causes an initial increase of its gradients (this effect
is clearly seen in Fig 9). For the concentration values considered in our study, we do not observe a
strong dependence of the mixing efficiency on η.

The instantaneous exponential decay rate of the scalar variance βp = − d
dt log〈θ2〉 can be written,

using Eq. (8), as

βp(t ) = − d

dt
log〈θ2〉 = 2D

〈(∇θ )2〉
〈θ2〉 , (9)

which can be directly compared with the decay rate due to molecular diffusion β0 = 2DK2.
The decay rate βp reaches a maximum value after a very short time, corresponding to the

maximum development of thin filaments of the scalar field. At longer time, since both 〈θ2〉 and
〈(∇θ )2〉 decay exponentially, βp approaches an almost constant value, about three times larger than
β0 (see Fig. 11) which quantifies the increased mixing efficiency. We note that the ratio βp/β0 is
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FIG. 11. Instantaneous exponential decay rate βp(t ) for different values of η in 3D simulations (left panel)
and 2D simulations (right panel).
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FIG. 12. Amplitudes of mean velocity profiles U (blue squares) and rms velocity fluctuations u′
rms (red

circles) as a function of η in 3D (filled symbol) and 2D (empty symbols) simulations.

proportional to the square of the ratio between the large scale of the scalar field 1/K and the typical
scale of its gradients (〈θ2〉/〈(∇θ )2〉)1/2.

E. Comparison between 2D and 3D

The results presented so far show that the properties of the chaotic flow, which is obtained from
3D numerical simulations of the model (1) for a dilute solution of rigid rods, are qualitatively
similar to those reported in previous numerical studies in 2D [15,16]. In particular, we found that
the fluctuations of the y component of the velocity uy, which is transverse both to the streamwise
direction of the mean flow x and to the direction of its gradient z, are considerably smaller
than those of ux and uz (see Fig. 4). This confirms that the dynamics of the three-dimensional
system is substantially two-dimensional, and that the properties of the chaotic flow are qualitatively
independent on its dimensionality.

To make a quantitative comparison, we performed an additional set of 2D simulations of Eq. (1)
in the (x, z) plane with the same parameters of the 3D simulations. The comparison of the mean
flow and velocity fluctuations, reported in Fig. 12, shows that the effects of polymers are more
pronounced in 2D than in 3D. At fixed value of the polymer concentration η, we find that the
velocity fluctuations are more intense in 2D than in 3D. Similarly, the reduction of the amplitude U
of the mean flow with respect to the laminar solution U0 is stronger in 2D than in 3D. It is worth to
notice that 2D and 3D curves of U and u′ as a function of η are almost parallel, which indicates that
the effect of dimensionality is systematic and it is independent on η.

The comparison of the momentum balance is reported in Fig. 5. Also in this case we observe
that the values of the friction factor in 2D are systematically higher than in 3D at fixed η. We find
that the drag enhancement is mostly due to the increase of the polymer stress, with a subdominant
contribution due to the increase of the viscous stress. The combined effect of increased friction
factor and reduced Reynolds number is clearly visible in Fig. 6, in which the deviation from the
Newtonian point f = 1 is stronger for the 2D simulations. In the energy balance, the reduction of
the amplitude of the mean flow causes a reduction of the energy injection rate εI in 2D simulations
with respect to the 3D ones at fixed η (see Fig. 7). This phenomenon is balanced by a reduction
of the viscous dissipation rate εν , while the energy dissipation due to polymers remains almost
unchanged.

In summary, we can conclude that the effects of rodlike polymers in viscous flows in three-
dimensions is weaker than in two dimensions. The origin of this difference is probably due to the
different rotational degrees of freedom of the rods. In 2D, the rotation of the polymers can occur
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only in the x-z plane. This implies that, during the rotation, polymers are oriented in the direction
of the gradient of the mean flow (the z direction). Conversely, in 3D they can rotate also in the
x-y plane. Indeed we observed that in the stationary regime the average values of R22 and R33 are
very similar. Nonetheless, the consequences of polymer rotations in the x-z and x-y planes on the
polymer stress tensor σi j are very different. We remind that σi j is proportional to the product of the
configuration tensor Ri j and the velocity gradient tensor ∂iu j . In the case of the laminar Kolmogorov
flow u(x) = [U0 cos(Kz), 0, 0], the only component of the velocity gradient which is nonzero is
∂3u1. As a consequence, there is no stress induced by rotations in the x-y plane (allowed only in
3D). In the case of the chaotic flow, the gradients of velocity in the y direction originates only from
the fluctuating part of the velocity field, therefore they are significantly smaller than those in the
z direction. As a result, the polymer stress in 3D is on average weaker than in 2D flow with the
same η.

An heuristic estimate of the dimensional dependence of the average polymer stress can be ob-
tained from the formal expression of the stress tensor in d dimensions [21] σi j = 2dνηRi j (∂l uk )Rkl ,
which is derived under the assumption of isotropy of the conformation tensor Ri j = δi j/d in the
limit of zero shear. Even though this hypothesis is not fulfilled in the case of the Kolmogorov flow,
since the nonvanishing mean shear induces a preferential alignment of the rods in the direction of
the mean flow, one can argue that simulations in 2D and 3D can be simply mapped by rescaling the
polymer concentration as η2D = (2/3)η3D. We tested this prediction by comparing two simulations
in 2D, with reduced parameters η2D = 4 and η2D = 5.33, with the corresponding simulations in 3D
with η3D = 6 and η3D = 8. In both cases, we found that the rescaling of the concentration reduces
the difference between the amplitude of the mean flow in 2D and 3D below 3%. Therefore, although
the rescaling is not exact, it provides a simple and useful empirical rule to translate 2D results
for 3D applications, at least for this flow. This mapping supports the interpretation of the dimen-
sional effects reported in our study in terms of the different rotational degrees of freedom of the
rods.

Finally, we compare the mixing properties of 2D and 3D flows by integrating the transport Eq. (8)
for a two-dimensional scalar field θ transported by the 2D flow. Initial conditions and diffusion
coefficient are identical to those of 3D simulations. The values of the instantaneous exponential
decay rate βp(t ) obtained in the 2D simulations are shown in Fig. 11. They are very similar to those
obtained in 3D simulations. This is in agreement with the observation that the intensity of velocity
fluctuations, which causes the mixing, is very similar as well (see Fig. 12).

V. CONCLUSIONS

We studied the dynamics of rigid rodlike polymer solutions at low Reynolds numbers by means
of direct numerical simulations of a rheological model both in 2D and in 3D. We found that the
presence of polymers induces a chaotic, turbulent-like flow with increased flow resistance and
enhanced mixing efficiency at Reynolds numbers at which the laminar solution for the Newtonian
fluid without polymers is linearly stable. The phenomenology observed is qualitatively independent
on the dimensionality, but we found that, for the same values of the parameters, the effects are
stronger in the 2D case. This difference is explained in terms of the different rotational degrees of
freedom of the rods.

Future numerical works in more complex and realistic geometries would open the possibility to
a direct comparison with the results of laboratory experiments. A viable experimental realization
could be performed with a dilute solution of polymers of length � ≈ 2–5 μm (e.g., xanthan gum) at
concentrations of about 100 wppm, in a microchannel of width L ≈ 2 mm with velocity of the order
of U ≈ 6 mm/s. The scales and the setup are similar to the ones considered in elastic turbulence
experiments [5,34,35]. For the comparison between models and experiments it would be useful
to investigate also the role of rotational diffusion, which is expected to influence the dynamics at
moderate rotational Péclet numbers.
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