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Conformal invariance of weakly compressible two-dimensional turbulence
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We study conformal invariance of vorticity clusters in weakly compressible two-dimensional turbulence at
low Mach numbers. On the basis of very high resolution direct numerical simulation we demonstrate the scaling
invariance of the inverse cascade with scaling close to Kolmogorov prediction. In this range of scales, the
statistics of zero-vorticity isolines are found to be compatible with those of critical percolation, thus generalizing
the results obtained in incompressible Navier-Stokes turbulence.
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I. INTRODUCTION

The inverse energy cascade is a key feature of two-
dimensional (2D) incompressible turbulence predicted by
Kraichnan many years ago [1]. As a consequence of the
existence of two inviscid quadratic invariants of the 2D in-
compressible Navier-Stokes equations, the enstrophy is trans-
ferred to small scales producing the direct cascade, while
energy moves to large scales generating the inverse cascade.
The inverse cascade in 2D incompressible turbulence has
been observed in numerical simulations [2–6] and laboratory
experiments [7–9], and its scaling properties have been es-
tablished, including the almost Gaussian statistics of velocity
fluctuations and the absence of intermittency [5].

More recently, scaling invariance of the inverse cascade
has been promoted to conformal invariance for some specific
features of the turbulent field. In particular, by using the
technique of stochastic-Löwner evolution (SLE), it has been
shown that clusters of vorticity are statistically equivalent to
those of critical percolation, one of the simplest universality
classes in critical phenomena [10]. This result, which suggests
an intriguing connection between (nonequilibrium) turbulent
flows and statistical models at the critical point, has been
extended to other 2D incompressible flows, including surface
quasigeostrophic turbulence [11] and a class of active scalar
turbulence [12]. Conformal invariance has also been inves-
tigated experimentally in Lagrangian reconstructed vorticity
field of a turbulent surface flow [13] (2D section of a three-
dimensional flow), where deviations from SLE predictions
have been observed.

In this paper, we study the appearance of conformal invari-
ance in the inverse cascade of weakly compressible 2D tur-
bulence. Compressible 2D turbulence has applications in nu-
merous geophysical, astrophysical, and industrial problems.
Specifically, we consider a flow with an ideal-gas equation
of state with the ratio of specific heats γ = cv/cp � 1, which
is relevant to astrophysical applications (where radiation pro-
vides for temperature equilibration) [14] and for soap films
when fluid velocities are of the order of the elastic wave speed
in the limit of large Reynolds numbers [15].

This paper is organized as follows. In Sec. II we introduce
the physical model, its phenomenology, and the numerical
simulation. In Sec. III we discuss the statistics of the inverse
cascade, while Sec. IV is devoted to conformal analysis of
isovorticity lines. Finally, Sec. V contains some conclusions.

II. MODEL AND PHENOMENOLOGY
OF 2D COMPRESSIBLE FLOWS

The dynamics of a compressible flow is given by the Euler
equations, which impose the conservation of mass, momen-
tum and total energy:

∂tρ + ∇ · (ρu) = 0, (1)

∂t (ρu) + ∇ · (ρuu + pI) = f , (2)

∂tE + ∇ · [(E + p)u] = f · u, (3)

where ρ is the density field, u the velocity, p is the pressure,
f is the external forcing, E = ρ(u2/2 + e) is the total energy
density (the sum of kinetic and potential energy density), and
I is the identity matrix. The system of equations (1)–(3) is
closed by the equation of state for an idea gas p = (γ − 1)ρe.
In the absence of external forcing f = 0, the system conserves
the total energy E = ∫

Edx, which is given by the sum of the
kinetic energy K = (1/2)

∫
ρu2 dx and the potential energy

U = ∫
ρe dx.

The average compressibility of the velocity field is quan-
tified by the rms Mach number M =

√
〈u2〉/c, where c is

the speed of sound in the fluid. The velocity field can be
decomposed into the solenoidal and irrotational components
u = us + ui, where ∇ · us = 0 and ∇ × ui = 0.

In the case of a 2D flow, they can be expressed in terms
of two scalar fields: The stream function ψ and the velocity
potential φ,

us = (∂yψ,−∂xψ ), (4)

ui = ∇φ. (5)
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The Laplacian of the velocity potential provides a local
measure of the divergence of the velocity ∇ · u = ∇2φ, while
the Laplacian of the stream functions defines the vorticity field
ω = ∂xuy − ∂yux = −∇2ψ .

The phenomenology of a 2D compressible flow is strongly
dependent on the Mach number. In the low-compressibility
regime (M � 1), the behavior is similar to that of the incom-
pressible case. One observes the development of a double-
cascade scenario in which the enstrophy � = (1/2)

∫
ω2ρ dx

is preferentially transferred toward small scales (direct cas-
cade), while the kinetic energy is transferred mostly to large
scales (inverse cascade). In the absence of a large-scale dis-
sipation mechanism (such as friction), the inverse cascade
process causes the accumulation of energy at the largest
scale (smaller wave number) of the flow. The phenomenon
of “spectral condensation” of kinetic energy on the lowest
accessible wave number [4] has been studied both in the
2D incompressible [16] and compressible flows [14,17]. It
has also been observed in quasi-2D geometries, i.e., in the
turbulent dynamics of thin layers [18,19].

The energy accumulation at large scales causes the growth
in time of the Mach number, increasing the compressibility
of the flow. A peculiar phenomenon of the compressible case
is the formation of acoustic waves, i.e., pressure fluctuations
which propagate within the fluid [20]. Acoustic waves of
sufficiently large amplitude break to form a train of N-
waves. Emerging shocks in turn speed up the attenuation of
acoustic energy. Shocks also amplify small-scale vorticity by
compression and produce new vorticity through shock-shock
interactions, while strong shear generates new shocks and
rarefaction waves [21,22]. At sufficiently large Mach num-
bers, the interaction between acoustic waves and vortices thus
causes a transfer of energy toward small scales through wave
breaking and the generation of shocks [14]. This provides a
stabilizing mechanism for the energy of the condensate, which
is fed by the inverse cascade process and is removed by the
acoustic waves, allowing for the formation of a statistically
steady state. This process resembles the so-called “flux loop”
observed in 2D stratified flows [23]. While the dynamics of
vortices and waves is strongly coupled at large scales, it has
been found to be almost independent at small scales, where
the cascade of wave energy follows the predictions of acoustic
turbulence and is decoupled from the enstrophy cascade [14].

Numerical simulation

The Euler equations (1)–(3) have been integrated by an
implicit large eddy simulation (ILES) [24] in a square periodic
domain of size L on a grid of 8192 × 8192 points using
an implementation of the piecewise parabolic method [25]
with the Enzo code [26]. The reference length, time, and
mass in the simulation are defined by choosing the box size
L = 1, the speed of sound c = 1, and the mean density ρ0 = 1.
Starting from a zero initial velocity field, the system is forced
by a solenoidal, random external forcing f acting on am
intermediate pumping scale L f = 2π/k f with k f = 1024π .
The time correlation of the forcing is of the order of the
time step, i.e., much smaller to any physical timescale in the
system. The rate of kinetic energy injection provided by
the forcing is ε f = 0.001. We remark that this value has to be

kept sufficiently small to avoid the production of shock waves
at the injection scale, which would inhibit the inverse cascade
of energy. The characteristic vortex turnover time at the
scale L f is τ f = ρ

1/3
0 L2/3

f ε
−1/3
f � 0.52, which is more than

104 times larger than the forcing correlation time. The time
integration has been performed up to time t = 30 with a
sampling of the velocity field and computation of the vorticity
field every �t = 0.05.

We remark that even if no explicit dissipative mechanism
is prescribed in (1)–(3), the code introduces numerical dissi-
pation which strongly affects scales smaller than 16�x (�x =
1/8192 is the spatial resolution).

III. STATISTICS OF THE INVERSE CASCADE

The temporal evolution of the total energy E , the kinetic
energy K , the enstrophy �, and the Mach number M during
the simulation is shown in Fig. 1. At the beginning of the
simulation, the Mach number is very small and the dynam-
ics of the system are dominated by its incompressible part.
Therefore, we expect to observe the development of an inverse
energy cascade propagating from the forcing scale L f to larger
scales r � L f and a direct enstrophy cascade toward small
scales r � L f . This is confirmed by the linear growth of the
total energy E ∼ εinvt with a growth rate εinv ≈ 0.92ε f , which
corresponds to the flux of energy in the inverse cascade. The
total energy is dominated by the contribution of the kinetic
energy K , while the potential energy U becomes visible only
at late times t � 20.

In contrast to the energy, we find that after an initial growth,
the enstrophy � reaches an almost constant value (see Fig. 1).
This happens because the direct enstrophy cascade transfers
the enstrophy injected by the forcing to the small scales, where
it is removed by numerical dissipation.

At late times, the inverse energy cascade will eventually
produce an accumulation of the energy at the largest scale,
giving rise to the formation of an intense vortex dipole (the

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  5  10  15  20  25  30

10
E

, 1
0K

, M
, Ω

/2
00
0

t

FIG. 1. Time evolution of the total energy E (red solid line),
kinetic energy K (blue dashed line), enstrophy � (purple dash-dotted
line), and Mach number M (black dotted line). The values of E and
K have been multiplied by a factor of 10 and � by a factor of 1/2000
for plotting purposes.
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FIG. 2. Power spectra of the solenoidal component of the ve-
locity Ps(k) (red solid line) and of the irrotational component Pi(k)
(blue dashed line), at time t = 20. Black dotted line represents
Kolmogorov scaling k−5/3.

condensate). The formation of this vortical structure results
in non-Gaussian statistics in the vorticity field and causes
the breaking of scale invariance [27]. Considering that we
are interested in the study of the conformal invariance of the
vorticity field, it is crucial to verify that the field is at least
scale-invariant. For this reason, in the following we will limit
our analysis to the time range 10 < t < 20, i.e., well before
the beginning of the formation of the condensate. Moreover,
in this time interval the value of � is almost constant, which
allows us to assume that the dynamics of the vorticity field
are in a statistically steady state. In this time range, the Mach
number varies from M � 0.12 at t = 10 to M � 0.18 at t =
20 (Fig. 1). The dynamics are therefore weakly compressible.

Furthermore, we will consider the scaling properties in the
range of scales of the inverse cascade L f � r � L, in which
the conformal invariance has been detected for the case of
2D incompressible turbulence [10]. As shown in Fig. 2, in
the range of wave numbers of the inverse cascade (0.04k f <

k < k f ) the power spectrum of kinetic energy is dominated by
the spectrum of the solenoidal component of the velocity field
Ps(k) = ∑

|q|=k |us(q)|2, while the spectrum of the irrotational
component Pi(k) = ∑

|q|=k |ui(q)|2 is much smaller (by more
than a factor of 200 between 0.04k f < k < 0.4k f ). The power
spectrum of the solenoidal component Ps(k) displays an ap-
proximatively Kolmogorov slope for wave numbers k < 0.6k f

with a steeper exponent close to −2 close to the forcing scale
[14,27]. At high wave numbers, the spectra of the irrota-
tional and solenoidal components become comparable. With
a more accurate numerical method and adaptively controlled
numerical dissipation, two independent direct cascades can be
resolved at k > k f : The enstrophy cascade and the acoustic
energy cascade. These are reflected in the scaling of power
spectra, Ps(k) ∼ k−3 ln (k/k f ) and Pi(k) ∼ k−2 [27]. While
Ps(k) dominates at k � k f , Pi(k) inevitably becomes dominant
at k � k f .

Another indication of the scale invariance of the velocity
field in the range of scales of the inverse energy cascade is pro-
vided by the third-order longitudinal structure function (SF)
S3(r) = 〈[δuL(r)]3〉 where δuL(r) = [u(x + r) − u(x)] · r/r
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FIG. 3. Third-order longitudinal structure function S3(r) (blue
circles) average over times 10 � t � 20. Black dashed line repre-
sents (6). Inset: Compensated structure function S3(r)/(εinvr) (blue
circles) and the predicted value 3/2 (black dashed line).

is the longitudinal velocity difference at scale r. In 2D incom-
pressible turbulence, the constant energy flux in the inertial
range gives an exact prediction for the third-order structure
function which, in homogeneous and isotropic conditions,
reads [28,29]

S3(r) = 3
2εinvr, (6)

where εinv represent the inverse kinetic energy flux. The third-
order SF, time averaged for 10 < t < 20 in our simulation, is
shown in Fig. 3. It displays a linear scaling range at r > L f

with a coefficient 3
2εinv (see inset of Fig. 3) in agreement with

the assumption of a constant energy flux. Let us notice that,
because of the lack of stationarity at large scales r � L f , the
scaling S3(r) ∼ r is observed only in a narrow range of scales.

IV. CONFORMAL INVARIANCE OF ISOVORTICITY LINES

The discovery of conformal invariance in 2D turbulence
was first made for the zero-vorticity lines in incompressible
Navier-Stokes equations [10] and then extended to other
2D turbulent systems characterized by different scaling laws
[11,12]. These previous results suggest the possibility to also
test conformal invariance in the inverse cascade of weakly
compressible turbulence.

We have extracted the vorticity clusters (i.e., connected
regions of positive or negative vorticity) and zero vorticity
isolines (boundaries of vorticity clusters) from the different
fields of the simulation. We have obtained an ensemble of
Nc = 461 399 clusters. One example of these clusters is shown
in Fig. 4 for an intermediate time in the simulation t = 20.
Here we observe the presence of clusters of different sizes,
each one enclosed by a complex, fractal boundary.

Figure 5 shows the probability distribution function (PDF)
p(A) of cluster size A, defined as the number of connected
sites which belong to the cluster. The PDF displays a power-
law behavior in the range L2

f < A < 10L2
f . The scaling expo-

nent observed in Fig. 5 is in agreement with the theoretical
value predicted in the case of critical percolation in 2D p(A) ∼
A−96/91−1 [30]. The same value has been previously observed
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FIG. 4. Top: Vorticity cluster, defined as connected regions with
the same sign of vorticity (here positive). Different colors are at-
tributed to different clusters. Regions of negative vorticity are black.
Bottom: Zero-vorticity isoline of the cyan cluster.

for the scaling exponent of the PDF of vorticity clusters’ size
in the case of incompressible 2D Navier-Stokes [10].

This result suggests that vorticity clusters produced by
the inverse cascade in weakly compressible turbulence are
statistically equivalent to clusters of critical percolation and
therefore display the same properties of conformal invariance.
In particular, the cluster boundaries in the continuous limit
are expected to belong to the class of conformal curves called
SLE curves [31,32]. In order to introduce briefly the basics of
the SLE, let us consider a curve γ (s), parameterized by the
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FIG. 5. Probability density function of cluster size A (blue cir-
cles). The black dashed line represents the scaling prediction by
percolation theory Ap(A) ∼ A−96/91.

time s, starting from a point of the boundary of the half-plane
H . At given time s, the curve γ (s) define a region Ks (the
hull) formed by the points of the complex half-plane which
cannot be reached from infinity without crossing the curve,
plus the curve itself. The simply connected set H \ Ks can be
mapped into H by an analytic function gs(z) which satisfies
the asymptotic behavior gs(z) ∼ z + 2s/z + O(z−2) at z →
∞. The conformal map gs(z) obeys the differential Löwner
equation [33]:

dgs

ds
= 2

gs(z) − ξ (s)
, (7)

where ξ (s) is the real driving function. The Löwner equation
establishes an equivalence between the curve γ (s) and its
driving function ξ (s). Different driving functions produce
different curves. In the case of random curves γ (s), Eq. (7) is
called stochastic Löwner evolution (SLE), and the driving ξ (s)
is a random real variable. It has been demonstrated that the
statistics of random curves are conformal invariant if and only
if the driving is a Brownian walk, i.e., a random function with
independent increments and with 〈(ξ (s) − ξ (0))2〉 = κs. Here
κ is the diffusion coefficient which classifies the universality
class of cluster boundaries in critical phenomena in two
dimensions [32,34,35]. One of the predictions for SLE curves
is their fractal dimension, which is known to be D = 1 + κ/8
(for κ < 8). In the case of critical percolation, for which κ =
6, the prediction is D = 7/4, which has been indeed measured
in the vorticity cluster of 2D turbulence [10].

We have therefore extracted the zero-vorticity line from
the fields of weakly compressible turbulence. The extraction
is performed by means of an algorithm which follows the
frontier of a cluster of vorticity by always keeping the positive
region on the right of the path. At variance with “true” SLE
curves, in our numerical simulation, scale (and conformal)
invariance can be expected in the range of scales of the inverse
cascade only. Therefore, for numerical convenience, we have
coarse grained the vorticity fields produced by the simulation
by halving the resolution to a 4096 × 4096 grid. One example
of a vorticity isoline obtained from this procedure is shown in
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FIG. 6. Probability density function of distances R between two
points belonging to the the same zero-vorticity line (blue circles).
The black dashed line represents the theoretical prediction Rp(R) ∼
R7/4.

Fig. 4 (right panel). The total number of isolines obtained is
N = 1144.

We have computed the correlation dimension D2 of the
zero-vorticity isolines by computing the probability density
function (PDF) p(R) of finding two points belonging to the
same isoline at distance R. For a fractal set, the probability
scales as p(R) ∝ RD2−1. As shown in Fig. 6, the PDF p(R)
displays a scaling exponent in agreement with the prediction
for the SLE curves with κ = 6, i.e., D2 = 7/4 in the range
of scales 1 � R/L f � 7, which corresponds to the the inverse
cascade.

Assuming that the ensemble of zero-vorticity isolines is
statistically equivalent to SLE curves, we have derived the
associated ensemble of driving functions ξ (s). The algorithm
which computes the driving for a generic curve is based on
the solution of the Eq. (7) in the case of an infinitesimal
line segment starting from the origin (0, 0) and ending in
(ξ, 2

√
ds): gds(z) = ξ +

√
(z − ξ )2 + 4ds. By approximating

the generic curve γ (s) with piecewise line segments, one
obtains the associated driving function ξ (s) (see Ref. [10] for
further details). Averaging over the ensemble of N = 1144
driving functions obtained, we have computed the variance
σ 2

ξ = 〈[ξ (s) − 〈ξ (s)〉]2〉. In the range 1 � s/(2L f )2 � 7, we
find that the variance grows linearly as σ 2

ξ = κs (see Fig. 7).
The driving ξ (s) is therefore a diffusive process with κ ≈
(5.7 ± 0.2), which is close (within the statistical uncertainty)
to the expected value of κ = 6. Moreover, the PDF of the
standardized driving [ξ (s) − 〈ξ (s)〉]/(κs)1/2 collapses onto a
standard Gaussian distribution function for values of s in the
scaling range (see Fig. 8). These findings support the conjec-
ture that the driving function is a genuine Brownian motion
ξs = √

κBs, and that the vorticity isolines are SLE curves
belonging to the same class of universality of percolation
corresponding to κ = 6.

The fact that the vorticity field of 2D compressible turbu-
lence produces conformal invariant isoline in the same class of
critical percolation deserve more discussion. It is well known
that, in two dimensions, clusters produced by a random field
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FIG. 7. Variance of driving function σ 2
ξ (s) as a function of the

parametrization s for the vorticity field (blue solid line) and for
the phase-randomized field (red solid line). The black dashed line
represents the theoretical prediction σ 2

ξ (s) = κs with κ = 6. In the
inset we show the compensated value σ 2

ξ (s)/s.

with correlation function which decays as r−a are in the same
class of uncorrelated percolation (i.e., correlations are irrel-
evant) if a > 3/2 [36]. Vorticity field in the inverse cascade
is not short correlated since correlation function decays as
r−4/3, and therefore it is not expected to belong to the same
class of uncorrelated percolation. Since 4/3 is close to 3/2 it
is interesting to check if SLE analysis is able to discriminate
between the turbulent vorticity field and a random field with
the same scaling properties.

To this aim, we have studied the traces produced by the
same data set of vorticity fields after phase randomization of
the Fourier modes. In this way we produce a random field
which has the same statistical properties of the original vor-
ticity field (i.e., the same spectrum and correlation function)
without the spatial structure produced by the dynamics. The
result of the SLE analysis is plotted in Fig. 7 and shows that
the random field is not compatible with critical percolation.
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FIG. 8. PDF of the driving functions ξs at different values of s:
s = 10L2

f (blue upper triangles), s = 20L2
f (red circles), s = 30L2

f

(orange squares), s = 40L2
f (green lower triangles).

023107-5



LEONARDO PUGGIONI et al. PHYSICAL REVIEW E 102, 023107 (2020)

V. CONCLUSIONS

In this work we have studied the conformal invariance of
weakly compressible 2D turbulence. We have shown that the
isolines of vorticity clusters are compatible with SLE curves
in the universality class of critical percolation, as in the case
of incompressible 2D turbulence. Our results therefore extend
those obtained in other 2D turbulent systems (Navier-Stokes,
surface quasigeostrophic, Charney-Hasegawa-Mima) to the
realm of (weakly) compressible turbulence.

One question which naturally arises from our results is
whether the conformal invariance property would survive in
higher compressible regimes characterized by larger Mach
numbers. While this is in principle interesting, we remark that,
by increasing the Mach number, a different phenomenology
emerges at large scales: When velocity fluctuations reach the
speed of sound, kinetic energy produces shock waves which
arrest the inverse cascade and provide a new mechanism

of energy dissipation [14]. This “flux loop” introduces a
characteristic scale in the process which breaks the scaling
invariance of the cascade. Conformal (and scaling) invariance
could still survive in the limited range of scales between
energy injection and shock wave production, and its study
would be an interesting problem for future investigation.
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