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ABSTRACT
We study the effect of turbulence on a sedimenting layer of particles by means of direct numerical simulations. A Lagrangian model in
which particles are considered as tracers with an additional downward settling velocity is integrated together with an isotropic homogeneous
turbulent flow. We study the spatial distribution of particles when they are collected on a plane at non-asymptotic times. We relate the
resulting coarse-grained particle density to the history of the stretching rate along the particle trajectory and the projection of the density
onto the accumulation plane and analyze the deviation from homogeneity in terms of the Reynolds number and the settling velocity. We
identify two regimes that arise during the early and well-mixed stages of advection. In the former regime, more inhomogeneity in the particle
distribution is introduced for decreasing settling velocity or increasing Reynolds number, while the tendencies are opposite in the latter
regime. A resonant-like crossover is found between these two regimes where inhomogeneity is maximal.
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I. INTRODUCTION

Sedimentation of particles in a turbulent flow is a crucial prob-
lem both for theory and applications. For example, it plays a key
role in the process of rain formation in clouds.1,2 In the marine
environment, sinking of particles is an important mechanism for
many physical processes: in the sequestration of carbon dioxide3,4
and in the downward transport of organic and inorganic aggregates,
such as marine snow,5,6 larval eggs, and microplastics.7,8 Experi-
mentally, a way to estimate the downward fluxes of particles in the
ocean interior is performed by placing sediment traps.9–11 An open
question concerns the identification of the mechanisms that lead to
the observed size and spatial distributions of particles, which are
collected at a given depth by the traps.

The interaction between particles and flow is determinant
to establish the spatial distribution of particles.12 Advection of
a homogeneous distribution of passive particles in an incom-
pressible flow generally results in a homogeneous concentration
of particles. Deviations from homogeneity may arise from some
type of compressibility, either in the flow itself or in the motion
of particles. In this case, particle dynamics is restricted to a

lower-dimensional or even fractal subspace. Some exemplary cases
of this phenomenon are found in the motion of particles under
significant inertial effects,13–16 in gyrotactic algae,17 in the action
of buoyancy that forces particles to relax to a specific isopycnal
depth,18 or even confined to move on a horizontal sheet19 or on a
free surface.20 Another situation arises when considering initially
inhomogeneous distributions. In this case, even with passive trac-
ers in incompressible flow, it is possible to observe inhomogeneities
at non-asymptotic time scales. Cuts or projections to a lower-
dimensional manifold can give rise to additional inhomogeneity in
this case. Under complex flow acting for sufficiently long times, the
particle distribution will generally recover homogeneity, but for the
finite times characteristic of realistic situations (for example, sedi-
mentation in the ocean), distributions are far from this asymptotic
limit.

In this paper, we investigate the dynamics of a sedimenting
layer of particles under three-dimensional turbulence and discuss
the role of the flow to create inhomogeneities. Particles initially dis-
tributed homogeneously on an upper plane are let to fall down in
a turbulent flow and are collected at a lower accumulation plane.
We will discuss how the final coarse-grained density of particles is
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related to the properties of the flow. Two contributions were iden-
tified from previous works: stretching of the particle layer and pro-
jection on the collecting surface. Different from the previous works
in which large-scale oceanic simulations21,22 or chaotic dynamical
systems23 were used, our attention is focused on the small-scale
inhomogeneities due to an isotropic homogeneous turbulent flow.
In Sec. II, we formulate the numerical setup and introduce the main
theoretical tools. Section IV describes our results and discusses them,
and our conclusions are summarized in Sec. V.

II. FORMULATION OF THE PROBLEM
We begin by considering a homogeneous and isotropic turbu-

lent flow described by an incompressible velocity field u(x, t) (e.g.,∇ ⋅u = 0) ruled by Navier–Stokes equations,

@tu + u ⋅ ∇u = −∇p + ν△ u + f, (1)

where p is the pressure, ν is the kinematic viscosity, and f is
the mechanical random forcing with imposed energy input ε. In
the absence of forcing and viscosity, the system conserves energy
E = 1

2 �u2�. When forcing and viscosity are at work, a turbulent
steady state can be reached, where energy is conserved only in a
statistical sense and transferred from large scales to small scales
with a constant flux.24 The energy input ε, together with the kine-
matic viscosity ν, defines the Kolmogorov microscales for the length
η = (ν3�ε)1�4, time τη = (ν/ε)1/2, velocity uη = (νε)1/4, and accelera-
tion aη = (ε3�ν)1�4. These scales will be used to define dimensionless
parameters.

We now discuss the equations of motion for the particles. We
consider small spherical particles of size a and density ρp transported
by the incompressible velocity field u(x, t). A standard modeling
setup is a simplified form of the Maxey–Riley equations25 for the
velocity of the particles v,

dv
dt
= βdu

dt
− v − u

τp
+ (1 − β)g, (2)

where β = 3ρf /(2ρp + ρf ) is the density contrast (ρf is the density
of the fluid), τp = a2/(3βν) is the Stokes relaxation time, and g is
the gravitational acceleration. If the flow is turbulent, we can define
two dimensionless parameters, the Stokes number St = τp/τη and
the Froude number Fr = aη/g. In the limits St → 0 and Fr → 0 but
such that St/Fr remains constant, we can neglect the inertial effects
without omitting the gravity term (since the settling velocity is23,26–28
vs ∝ St/Fr), leading to the reduced first-order differential equation,

v(t) ≡ dX(t)
dt

= u(X(t), t) − vsẑ. (3)

In this expression, we neglect terms of first order in St. Thus,
particles are “tracers” transported by the incompressible velocity
field u(x, t) that additionally sink with a constant settling velocity
vs = (1 − β)gτp along the vertical direction z (characterized by
the ẑ unit vector). The model defined by Eq. (3) has been largely
studied in the literature and in previous studies on this specific
subject.11,21,23,26,29 We remark that the model is derived within the
assumption that particles are small, with particle Reynolds num-
ber Rep = vsa/ν � 1, and not interacting so that each parti-
cle evolves independently from the others. Furthermore, imposing

St < 1 restricts the validity of the reduced model to settling velocities
vs < (1 − β)gτη.

We introduce a dimensionless settling parameter Φ = vs/U,
with U being the root mean square velocity U = (2E/3)1/2. Notice
that for Φ� 1 (i.e., vs � U), the motion of the particles is ballistic
and turbulence is reduced to a small perturbation. On the contrary,
when Φ ≈ 1 or Φ � 1, trajectories are strongly controlled by tur-
bulence and a random-like motion arises. The constraint vs < (1− β)gτη, ensuring St < 1, reads as Φ < 151�4(1 − β)Fr−1Re−1�2λ in
dimensionless quantities (see the definition of Reλ in Sec. III).

At the initial time t = 0, particles are homogeneously released at
random positions on a horizontal plane z = L, after which they move
following Eq. (3). In order to investigate the evolution and defor-
mation of the layer of particles, we need to calculate, among other
quantities, the local stretching rates along each particle trajectory.
We introduce the Jacobianmatrix J(t) describing separation in time
δX(t) of particle trajectories initialized at an infinitesimal distance
δX(0), i.e.,

δXα(t) = �
β=1,2,3

Jαβ(t)δXβ(0), (4)

with

Jαβ(t) = @Xα(t)
@Xβ(0) . (5)

Using the chain rule, the evolution of Jαβ is given by

d
dt
Jαβ(t) = �

γ=1,2,3@γuα(X(t), t) Jγβ(t), (6)

where @γuα(X(t), t) is the fluid velocity gradient measured at the
position of the particle that started at X(0). The initial condition is
Jαβ(0) = δαβ. Since initially the particle surface is horizontal, the
first and second columns of the matrix Jαβ(t) give at each time two
vectors, t1(t) and t2(t), tangent to that falling surface.

We are interested in quantifying the final distribution of par-
ticles deposited on a horizontal plane at a fixed depth, say z = 0.
At that plane, we can define a particle surface density ρ(xh), with
xh = (x, y) denoting the horizontal components. The relationship
between the homogeneous density ρ0 at the upper release plane and
the density ρ(xh) at the lower collecting plane is given by a total den-
sity factor F(xh) defined by ρ(xh)/ρ0 ≡ F(xh). As demonstrated in
previous work,23,30 this total factor is the product of two contribu-
tions: F(xh) = S(xh)P(xh). S, the stretching factor, characterizes the
stretching accumulated by the falling surface around the trajectory
that reaches the lower plane at xh, whereas P, the projection factor,
takes into account the orientation-dependent footprint of the falling
surface on the horizontal collecting plane in the neighborhood of
xh. These two factors can be calculated23,30 (cf.31,32 as well) from the
tangent vectors t1(t) and t2(t) [thus, from Eq. (6)] as

���������
S = �t1 × t2�−1,
P = �vz ��n̂ ⋅ v� .

(7)

All quantities are computed at the final time th at which the particle
trajectory reaches position xh on the collecting plane. vz is the ver-
tical component of the particle velocity v at that time, and n̂ is the
unit vector normal to the surface that can be computed by normal-
izing n, the vector normal to the surface given by the cross product
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n(th) = t1(th) × t2(th). If the falling surface reaches the accumulation
plane horizontally around xh, n̂ at that location points along the z
axis and P = 1, meaning that there is no projection effect. Note that
P diverges where n̂ ⋅ v = 0, i.e., where the particle velocity arrives
at the collecting plane tangent to the falling surface. These locations
define caustics that form lines and typically occur when the falling
surface develops folds. On the other hand, the area of an infinitesi-
mal surface element at time t is |t1(t) × t2(t)| dA0, where dA0 is the
initial area. Thus, S = 1 if the surface reaches the accumulation plane
unstretched.

III. NUMERICAL SIMULATIONS
We solve Eq. (1) with a pseudo-spectral method on a triply

periodic cubic domain of size L = 2π containing M3 = 323 − 2563
grid points to obtain statistically steady flows with Taylor-microscale
Reynolds number Reλ = Uλ/ν ≈ 19–93, where λ = U

�
15ν�ε is the

Taylor microscale and U is the root-mean-square velocity fluctu-
ation. Time marching is performed using a second-order Runge–
Kutta scheme. The forcing acts only at large scales in a shell of
wavenumbers k ≤ kf and maintains a constant energy input �f ⋅u�
= ε, which equates, on average, the energy dissipation rate. This is
obtained by taking f(x, t) = εΘ(kf − k)u(x, t)�2Ek≤kf , whereΘ is the
Heaviside step function and Ek≤kf is the kinetic energy restricted to
the wavenumbers smaller than kf .33–35 We ensure that small-scale
fluid motion is well resolved by imposing the Kolmogorov length
scale η = (ν3�ε)1�4 of the resulting flow to be of the same order as our
grid spacing, kmaxη > 1.8, where kmax =M/3. Table I reports the most
important Eulerian parameters used in the simulations. Additional
numerical details are given in Ref. 36.

After the flow has reached statistical steady state, N = 1.2× 106 particles are initialized with homogeneously random posi-
tions on a plane at a fixed horizontal position z0 = L. The trajectory
of each of them is evolved with Eq. (3). The associated Jacobian
matrix Jαβ(t) giving deformations close to that trajectory is simul-
taneously evolved with Eq. (6) and initial condition Jαβ(0) = δαβ.
Fluid velocity and its gradients are calculated by third-order spa-
tial interpolation on the particles’ positions. The integration time
step dt is chosen to be smaller than the time needed to cross a grid
cell, which is equal to satisfying the condition vsdt/dx < 1, where dx
= L/M. Deformation of the evolving surface is characterized by its
tangent vectors t1(t) and t2(t), given by the first two columns of

TABLE I. Parameters of the four turbulent flows used here: resolution M, kinematic
viscosity ν, kinetic energy E = 1

2 �u2�, root mean square velocity U = (2E/3)1/2,
Kolmogorov velocity uη = (νε)1/4, eddy turnover time T = E�ε, Kolmogorov time scale
τη = (ν/ε)1/2, integral length scale L = E3�2�ε, Taylor microscale λ = U(15ν/ε)1/2,
Kolmogorov length scale η = (ν3�ε)1�4, and Taylor-microscale Reynolds number
Reλ = Uλ/ν. All the simulations are performed with energy dissipation rate ε = 0.1 and
domain size L = 2π.

M ν E U uη T τη L λ η Reλ

32 4× 10−2 0.47 0.56 0.25 4.65 0.63 3.17 1.36 0.16 19
64 2× 10−2 0.52 0.59 0.21 5.25 0.45 3.80 1.02 0.09 30
128 7× 10−3 0.61 0.64 0.16 6.11 0.26 4.77 0.65 0.04 60
256 3× 10−3 0.62 0.65 0.13 6.24 0.17 4.93 0.33 0.02 93

Jαβ(t), and by the normal vector n(t) = t1(t) × t2(t). To limit numer-
ical errors arising from exponentially different values of the com-
ponents of Jαβ(t), a Gram–Schmidt orthonormalization is applied
periodically to the vectors t1(t), t2(t), and n(t), and a new initial
condition for Jαβ is built by using the resulting vectors as columns.
The stretching factor S in Eq. (7) is computed as a product of the
partial stretching factors obtained before each reinitialization. We
consider 17 different values of the settling velocity vs. The largest
values do not satisfy the constraint imposed by St < 1 (a validity con-
dition for the model, see Sec. II), but St = 1 is clearly marked in every
figure.

As we let particles fall and be transported by the flow, we
observe the deformation of the initially flat and homogeneous dis-
tribution of particles into a crumpled surface [see Fig. 1]. Since∇ ⋅u
= 0, the dynamics defined by Eq. (3) is also incompressible (∇ ⋅ v
= 0), and we expect that a homogeneous distribution (in the three-
dimensional space) is recovered after a sufficient number of eddy
turnover times. Such a return to homogeneity can be obtained either
at large times or, equivalently, at large depths. At finite times or
depths, we suggest that the settling parameter Φ = vs/U determines
the morphology of the surface.

Integration of particle trajectories is performed until the par-
ticles reach the bottom plane at z = 0. In principle, there may be
particles that are trapped forever in the flow above the bottom plane,
but for the parameters used here, all particles arrive at the bot-
tom plane within a finite time. When a particle reaches the bottom
plane at z = 0, we register its position X(th) = (xh, 0), its velocity v,
and its arrival time th. With this information and the values of the
stretching computed along the trajectory, we are able to compute
the total stretching S, the projection P, and the total factor F for each
particle.

We recall that the simulations of the fluid dynamics are imple-
mented with periodic boundaries, which means that the accumula-
tion plane is neither a physical barrier nor a wall. For the particles,
however, the domain is periodic only in the horizontal directions. In
the vertical direction, it is semi-finite with an absorbing boundary

FIG. 1. Particle distribution in the initial homogeneous configuration at z = L (upper
plane) at an intermediate time (crumpled surface) and particles finally deposited at
the lower plane z = 0.
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condition at the bottom, on the accumulation plane, where parti-
cle trajectory integration is stopped. We also remark that caution
should be taken when considering fast settling particles in a periodic
flow,2,37 since they can perceive spurious correlations of the turbu-
lent flow, when the time it takes a particle to fall through the domain
is smaller than the correlation time of the underlying flow. In such
standard setups,37 particles were recirculating along the periodic
domain, and then, if falling sufficiently fast, they could artificially
encounter the same eddy several times. In our setup, a fast particle
can sample parts of the same eddy twice at most. Also, the density
factor accumulates stretching contributions from the whole particle
trajectory, of which the boundary region is just a tiny part. Thus, we
expect the results described below to be independent of the use of
periodic boundary conditions. In fact, we have computed the aver-
age time-dependent stretching on particles with trajectories stopped
at the same accumulation layer, but with a domain size L for the flow
simulation twice as large, and found no difference with the result
under the setup described here.

IV. RESULTS AND DISCUSSION

A. Direct inspection of spatial variations
Particles reach the bottom with different times of arrival.

Hence, neighboring particles on the accumulation plane may have
visited different regions of the domain, experienced very different
histories of stretching and folding, and finally be collected at differ-
ent moments. Similarly, particles that are initially close may have
diverged and concluded their trajectories in very distant regions and
at very diverse times as well.

First, we aim to obtain a direct quantitative insight into the
inhomogeneities in the distribution of particles collected on the
accumulation plane. A suitable way to characterize this concentra-
tion field is to compute a coarse-grained surface density ρij, where
the indices (i, j) label a set of boxes on the collecting plane: par-
ticle positions on that collecting plane are located within a two-
dimensional grid with resolutionMB and counted in each cell of size
LB = L/MB so that ρij = nij�L2B, where nij is the number of particles
in the cell (i, j). Summing over all cells, one obtains the total num-
ber of particles as ∑MB

i,j=1 nij = N. The initial density, namely, ρ0, is
equal to N/L2 so that ρij�ρ0 = (nijL2)�(NL2B) = (nijM2

B)�N. In the
homogeneous case, when nij = N(LB�L)2, we obtain ρij/ρ0 = 1. If
the particle distribution becomes inhomogeneous, the presence of
voids and clusters will be registered where ρij/ρ0 < 1 and ρij/ρ0 > 1,
respectively.

In the absence of folds, ρij/ρ0 is a coarse-grained version of
F(xh) = ρ(xh)/ρ0. If more than one branch of the surface appears at a
particular position due to some folding of the surface, ρ/ρ0 will cor-
respond to a sum of the coarse-grained values of F characterizing the
different branches.

In Fig. 2, examples for the spatial distribution of the coarse-
grained particle density, the total density factor, and the separated
contributions of stretching and projection are shown on the accu-
mulation plane for a given settling parameter (chosen near the
maximal observed inhomogeneity, as characterized by the Poisson
dispersion index χ defined below). F, S, and P have also been coarse-
grained by taking the arithmetic average in the same cells as those
that define ρij. (Note that summation over different branches is not

actually performed for this qualitative inspection.) We observe the
emergence of clustering of particles in the coarse-grained density
and in the total density factor, which are in reasonable agreement
with each other, even if a perfect agreement is not expected, since
the presence of folds is obvious. At most points, we observe that
S < 1, meaning that the infinitesimal area |t1 × t2| dA0 has grown
larger than the original dA0. Also, the most noticeable features in
P are large values that arise from the lines at which n̂ ⋅ v → 0,
i.e., from the caustic lines at which P diverges. In fact, a compar-
ison with the maps of stretching and projection suggests that the
largest inhomogeneities are due to the formation of caustics, the
abundance of which increases with the Reynolds number Reλ, lead-
ing to the formation of a complex web of filaments. The dominance
of caustics is similar to the case of advection of inertial heavy par-
ticles, but in that case, they arise from the compressibility of the
particle flow,38,39 whereas here, the particle flow is incompressible
(∇ ⋅ v = 0) and develops caustics because of the two-dimensional
character of the initial distribution, together with the bending action
of the flow and the projection effect on the bottom surface. These
three effects concur in the formation of the final distribution of
particles.

B. Statistical characterization of inhomogeneities in
the collecting plane

Next, we quantitatively investigate the degree of inhomogene-
ity and its dependence on Φ and Reλ by evaluating the so-called
Poisson dispersion index χ of the particle number distribution nij
defined over the coarse-graining boxes of the accumulation plane.
We also discuss implications of the choice of the box size LB for
coarse-graining.

As a first step, the average and the standard deviation of the set
of values {nij} on the accumulation plane are considered (similarly
as in Refs. 23 and 30). Since the number of particles is conserved
and periodic boundary conditions are prescribed in the horizontal
direction, the spatial average of nij is the same as the initial num-
ber: nij = n0 = N�M2

B (where the bar represents the average with
respect to boxes). Simple quantifiers of inhomogeneity are the stan-
dard deviation σn and its square, the variance. The latter is con-
veniently normalized by n0 to quantify deviations from a homo-
geneous Poisson distribution by the Poisson dispersion index as
χ = σ2n�n = σ2n�n0. Note that χ = 1 corresponds to a homogeneous but
random distribution, describing particles arriving at uniformly ran-
dom positions on the accumulation plane. In such a case, a nonzero
standard deviation σn results from the finite number of particles,
which, after coarse-graining, leads to a Poisson distribution of n over
the boxes. True inhomogeneity, with clusters and voids, is indicated
by χ ≠ 1.

How to choose LB for coarse-graining is not obvious. On the
one hand, it is not meaningful to take LB below some mean distance
between the particles (ρ−1/2). On the other hand, LB may be cho-
sen below the spatial resolution L/M of the fluid flow in order to
resolve small-scale folds of the particle sheet, which may have an
important effect on the observed inhomogeneity. In Fig. 3(a), we
present the dispersion index as a function of the settling parame-
ter Φ and where the size of the coarse-graining boxes is chosen to
depend on the resolution M of the fluid model as LB = 2L/M and
thus also on the Reynolds number [cf. Table I]. This box size is
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FIG. 2. Color map of the final distribution at the accumulation plane of the coarse-grained particle density ρ/ρ0 (first row; box resolution of the coarse-graining is MB = 512),
the total density factor F(xh) (second row), and the separated contributions due to the stretching S(xh) and the projection P(xh) factors (third and fourth row). Reλ = 19, 30,
60, 93 in the four columns from left to right. Computations are for Φ = 3, a value for which a large Poisson dispersion index χ is attained.

near the smallest characteristic scale (the Kolmogorov length scale)
of the fluid motion but varies between relatively coarse (L/16) and
much finer (L/128) values compared to the domain size. Irrespec-
tive of Reλ, particles are found uniformly distributed on the accu-
mulation plane for large Φ (χ ≈ 1), which is a result of the lack
of time for the surface to deform (remember that the surface is
represented by randomly initialized particles). At intermediate Φ,
we start to observe considerable inhomogeneities characterized by
χ > 1. A maximum of clustering is found between Φ = 1 and 4
when the particle settling velocity vs is of the same order as the root-
mean-square fluid velocity U. Note also that the accumulation plane
would be reached during one unit of the integral time scale T by a
particle uniformly settling with Φ between 1.5 and 2.5 in all simula-
tions [see Table I]. Decreasing Φ further results in a slight decrease
in χ.

Figure 3(a) also shows that the limiting value of χ for
Φ → 0 strongly depends on the Reynolds number. For any Φ,
in fact, a higher Reλ implies a smaller χ. This result means that

inhomogeneities at the Kolmogorov length scale are actually atten-
uated as the velocity field becomes increasingly complicated, which
can be attributed to an increased mixing.

One may, of course, also compare inhomogeneities observed at
the same spatial resolution LB in flows with different Kolmogorov
scale and Reλ. Results are shown for a large and a small LB in
Figs. 3(b) and 3(c), respectively.While the characteristics of the indi-
vidual lines are the same as in Fig. 3(a), curves for different Reλ cross
at a value of Φ a bit above Φ = 1. That is, it depends on the set-
tling velocity whether increasing turbulence strength attenuates or
enhances inhomogeneity observed at a given spatial resolution. The
settling parameter of Fig. 2 is just large enough to fall into the latter
category.

It is worth noting that inhomogeneities observed at a small
resolution LB are typically weaker than those at a larger resolution
for any given Reynolds number: compare the range of χ between
Figs. 3(b) and 3(c) and see Figs. 3(d) and 3(e) for a direct representa-
tion for given (large) values of Φ. On the finest spatial scales, where

Phys. Fluids 32, 075104 (2020); doi: 10.1063/5.0003614 32, 075104-5

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 3. The Poisson dispersion index χ computed for the two-dimensional horizontal distribution of particles at the accumulation level as a function of the settling parameter
Φ [(a)–(c)] and the coarse-graining box size LB [(d) and (e)] for different values of Reλ. LB = 2L/M (a), LB = L/16 (b), LB = L/128 (c), Φ = 3.35 (d), and Φ = 6.7 (e). The settling
parameter Φ corresponding to St = 1, an upper bound of the validity range of 3, is marked by a black contoured symbol and a dashed line for each Reλ.

for fast settling, initial randomness dominates over later mixing, χ
appears to converge to 1.

We now see that the degree of observed inhomogeneity strongly
depends on the spatial resolution, but its dependence on the settling
velocity and on the turbulence strength (Reλ) is robust for any given
resolution.We can conclude about the existence of two regimes from
the point of view of parameter dependence, one for large Φ and the
other for small Φ, where the effect of increasing mixing by the flow
is opposite. We will elaborate on this point and on the crossover
between the two regimes in Subsection IV C, where we analyze the
mechanisms underlying our observations.

When using the correlation dimension1,13,18 for estimating
inhomogeneities as a function of Φ (not shown), the same qualita-
tive behavior is observed as with the Poisson dispersion index. This
suggests that our conclusions are robust, and they do not depend on
the choice of the particular statistical quantifier.

C. Statistics of stretching and projection over
trajectories

We attempt to explore the mechanisms leading to the depen-
dence of χ on Φ and Reλ presented in Fig. 3 by investigating
corresponding properties of the two mechanisms contributing to
inhomogeneities, namely, the stretching and the projection effects.
For the statistical quantification of their local characteristics, we
treat different branches of the sedimenting surface separately, with-
out any summation. Furthermore, at difference with Sec. IV B,23,30
we explore in this section the statistics with respect to the uni-
form distribution of particles in the initial layer, or equivalently, we
weight each particle trajectory equally. This provides a point of view
complementary to the statistics over boxes in the collecting layer

explored in Sec. IV B to compute σn and χ. In particular, we compute
here arithmetic averages �A�, standard deviations σA, and correla-
tion coefficients of A = S, P, and also F over the individual values
obtained for the individual particles, e.g.,

�A� = 1
N

N�
k=1

Ak, (8)

where k runs over different particles. In the limit of infinitely many
particles,

�A� = ∫ A(x0)d2x0
∫ 1 d2x0

= ∫ A(xh)F(xh)d2xh
∫ F(xh)d2xh , (9)

where the dx0 integrals are taken over the complete initial release
plane, and the integral over dxh over each branch of the surface sed-
imented on the collecting plane with a subsequent summation of the
values obtained for the different branches. We have used that the
number of particles is conserved, ρ0d2x0 = ρ(xh)d2xh. The second
expression in (9) illustrates why such a uniform weighting accord-
ing to the initial (uniform) distribution of the particles is equivalent
to weighting the points in the collecting plane with the total density
factor F (or the final density at those points if the sedimenting sur-
face reaches the collecting plane in a single branch). Note that this
kind of evaluation for a finite number N of particles corresponds
to an “implicit” coarse-graining on the collecting plane, with a grid
provided by the particles’ positions.

To better understand the contribution of stretching and projec-
tion to the inhomogeneities, we first report in Fig. 4 the probability
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FIG. 4. Probability density functions (statistics over released particles) of stretching p(S) (a), projection p(P) (b), and the total density factor p(F) (c) at Reλ = 60 for the
indicated values of the settling parameter Φ.

density functions of S, P, and F over the individual trajectories. The
distribution of F combines the behavior of S and P. The low values of
the total density factor F� 1 are controlled by low values of stretch-
ing, whereas large values F � 1 are produced by the large values
in P, associated with caustics. The distributions of stretching appear
to behave as power laws for small values of the settling parameter
Φ. When Φ is below roughly 1 [the value giving the maximum of
clustering; see Figs. 3(a)–3(c)], the weight given to very small values
of S increases as Φ decreases, since the areas of the surface elements
arriving on the collecting plane can grow without limits. On the con-
trary, the distribution of P remains mostly unchanged for varying
values of Φ and does not depend on Reλ (not shown), revealing a
universal geometric feature of the projection near caustics. Indeed,
in Fig. 4, we observe p(P) ∼ P−2 and p(F) ∼ F−2 for P � 1 and F� 1, respectively, which can be explained by the formation of caus-
tics. It is a well-known result that, generically, the density profile at

a line caustic diverges as F ∝ x−1/2, where x is the transverse spatial
distance to the caustic.38 Considering the transformation between
variables x and F (assuming homogeneity in the direction parallel to
the caustic), p(F)dF = p(x)dx, and that, as seen before, the density
factor gives the proper weight to the horizontal locations p(x) ∼ F,
one obtains p(F) = |dx/dF|p(x)∝ F−2.

To place the corresponding properties of S and P into a
narrower context, we now investigate the average and standard
deviation (statistics over released particles) of the total density fac-
tor F. �F� and σF are plotted in Fig. 5. The former character-
izes the average dilution (�F� < 1) or concentration (�F� > 1)
of particles on the collecting plane with respect to the initial
release density ρ0 (remember that different branches generated by
folding of the falling surface are treated separately). Meanwhile,
σF describes the degree of inhomogeneity among the different
particles.

FIG. 5. Average and standard deviation
of F, S, and P for different values of Reλ
as a function of the settling parameter Φ.
(a) Average of F, (b) average of S and P,
(c) standard deviation of F, and (d) stan-
dard deviation of S and P. The settling
parameter Φ corresponding to St = 1, an
upper bound of the validity range of 3, is
marked by a black contoured symbol and
a dashed line for each Reλ.
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The shape of σF as a function ofΦ in Fig. 5 is very similar to that
of χ in Fig. 3 (except for the large-Φ asymptotics, of course), which
suggests that the accumulated inhomogeneities (represented by χ)
are closely related to the trajectory-wise processes of stretching and
projection, as opposed to summation of the density over different
branches of the sedimented surface, which could also have a domi-
nating effect. Note, however, that a quantitative comparison would
be difficult so that summation may well be important too.

For increasing Φ, �F� converges to 1, as expected in the lack
of time for deformation and bending, while it generally exhibits a
shift toward net dilution, or area expansion, for decreasing Φ below
Φ ≈ 1, which will be understood by analyzing S and P. Between
Φ = 1 and 10, �F� exhibits a prominent maximum, just like χ and
σF . This maximum suggests again that either vs ≈ U or a settling
time near the integral time scale (or both circumstances) results in
a kind of resonance where maximal net deformation and maximal
inhomogeneity in the deformation take place. This resonance rep-
resents, furthermore, a crossover between the regimes of large and
small Φ with different tendencies.

Very close to Φ = 1, just as for χ, we find a crossing in the Reλ-
dependences too: for Φ < 1, an increasing Reynolds number results
in a shift toward net dilution or expansion (decreasing �F�) and a
decrease in inhomogeneity (σF), but these tendencies revert near
Φ = 1. We conclude that the effects of increasing the strength of tur-
bulence are far from trivial but are certainly different in the regimes
of small and large settling parameter.

Much insight becomes accessible about explanations for the
above tendencies by analyzing the statistics of S and P. The decay
of both σS and σP in Fig. 5 follows the same power law for large
Φ as σF . σS is not affected much by the resonance between Φ = 1
and 10 but typically becomes slightly decreasing for Φ < 1 while
exhibiting only a minor degree of inhomogeneity there. Based on
this observation and the similar magnitudes of σF and σP in Fig. 5,
most of the inhomogeneity in F near and below the resonance might
appear to originate from the inhomogeneity of P. Note, however, the
rather erratic behavior, lacking a clear tendency, of σP for decreas-
ingΦ, contrasting the behavior of σF . While this relationship will be
further commented on later and a comprehensive understanding of
all aspects is beyond the scope of the current analysis, a universal
conclusion about the small-Φ behavior of the degree of inhomo-
geneity in any quantity seems to be a convergence to some constant
value, despite the arbitrarily long time available for deformation
for Φ→ 0.

This behavior of the standard deviation appears to apply to
mean values as well, as Fig. 5 illustrates for �S� and �P�. With �P�
being mostly constant forΦ < 1, the decrease in �F� can naturally be
linked to the decrease in �S� for decreasingΦ observed in this regime
in Fig. 5. The decrease in �S� below 1 actually describes a stretching
(expansion, corresponding to a dilution of the density) of increasing
strength, which is presumably related to the longer time available
for the development of deformation. The same effect may underlie
the even sharper response of �P� for decreasing Φ between 10 and
1, before the increase in �P� saturates. The difference in the sharp-
ness and the saturation of �P� is what gives rise to the resonance-like
behavior in �F�, even though F = SP only pointwise, and �F� ≠ �S��P�
in general due to spatial correlations.

Figure 5 also provides with the opportunity to study the effects
of varying the Reynolds number. Both �P� and σP depend weakly

and irregularly on Reλ for Φ < 1. This might be regarded as an indi-
cation of a saturation in all effects of projection, which cannot be
enhanced further by modifying the circumstances (Reynolds num-
ber and settling parameter). The explanation of such a saturation
might be the reaching of a “maximal randomness” in the orien-
tation of the normal vector of an arbitrarily chosen point of the
sedimenting surface.23

The fact that �S� does not saturate but decreases with increas-
ing Reλ in the same range of Φ (Fig. 5; similar to �F�) suggests that
a similar saturation is not reached in the stretching, the net effect of
which may grow without any limit, as shown by the distribution of
S in Fig. 4(a). The dependence of �S� (and �F�) on Reλ might sim-
ply be understood as stronger deformation resulting from stronger
turbulence. Especially, in view of this, explaining why inhomogene-
ity is attenuated with the increase in Reλ as indicated by σS might be
linked to the long-term homogenization in an increasingly compli-
cated flow with the increase in mixing capability. The attenuation of
inhomogeneity with the decrease in Φmight be explained in a simi-
lar way but relying on the longer time available for mixing instead
of the increasing mixing capability of the flow. How σS depends
on Reλ and Φ for Φ < 1 appears to be transferred to σF (Fig. 5),
which suggests that inhomogeneities in stretching do have an impor-
tant effect on the final inhomogeneities despite their much smaller
magnitude.

By now, mixing is understood to be a central process in shap-
ing the inhomogeneities for Φ < 1. We have seen that more mix-
ing (smaller Φ or larger Reλ) attenuates inhomogeneities on the
long term (at least when investigated at a predefined spatial resolu-
tion, which is determined here by the finite number of particles, cf.
Sec. IV B). Without mixing, however, there would be no inhomo-
geneities at all.

We resolve this apparent contradiction by considering the
short-term effects of mixing. In particular, when compared to the
small-Φ regime, mixing works in the opposite way in the large-
Φ regime. That is, σP and σS (also �P� and �S�) increase with the
increase in Reλ (see Fig. 5). The presumable explanation precisely
lies in the time available for mixing, which is around or less than the
integral time scale. It seems plausible that saturation is not reached
in the effects of the projection, nor homogenization is performed,
which is confirmed by σP and σS growing from 0 with the decrease in
Φ and increase in Reλ in Fig. 5. As long as the sheet is not deformed
very much, stronger turbulence or longer time naturally results in
the intensification of both the net effects of deformation and their
inhomogeneity. For the net effects �P� and �S�, this is similar to the
Φ < 1 regime except that �P� saturates there.

Comparing the Reλ-dependence of �S� and �P� for Φ � 1, the
former becomes weaker than the latter, and this is what we suppose
to yield a change in the dependence of �F� on Reλ between the two
regimes. At the same time, the similar change for σF is more straight-
forwardly explained by the same change for σS and σP, correspond-
ing to an inherent difference between the short-term and long-term
behaviors. It is interesting to observe that introducing stronger tur-
bulence enhances and attenuates inhomogeneities before and after
the crossover.

So far, we have learnt that observable inhomogeneities (as in
Fig. 3) are strongly determined by trajectory-wise processes (inves-
tigated in Figs. 4 and 5). Increasing mixing by the flow has been
identified to introduce and enhance inhomogeneities on the short
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FIG. 6. Pearson correlation coefficients:
(a) C(F, S) and (b) C(F, P) for different
values of Reλ as a function of the settling
parameter Φ. The settling parameter Φ
corresponding to St = 1, an upper bound
of the validity range of 3, is marked by
a black contoured symbol and a dashed
line for each Reλ.

FIG. 7. (a) Fraction of particles Nc /Np in caustics character-
ized by having n̂ ⋅ v = 0 (numerically, the requirement is�n̂ ⋅ v� < 0.01). The settling parameter Φ corresponding to
St = 1, an upper bound of the validity range of 3, is marked
by a black contoured symbol and a dashed line for each
Reλ. (b) Positions of the particles sedimented on the col-
lecting plane. In red, particles in caustics as defined above.
Φ = 1 and Reλ = 19.

term and to attenuate them on the long term (at the spatial resolu-
tion corresponding to the finite number of particles). We point out,
however, that summation over the increasingly numerous branches
of the falling layer may contribute to the attenuation of inhomo-
geneities. Irrespective of that, the strongest inhomogeneities have
been linked to the projection of the falling layer onto the accu-
mulation plane (e.g., caustics). However, the impacts of projection
have been found to saturate after entering the well-mixed regime,
where the parameter dependence of stretching effects appears to
be dominant, conforming with the above-mentioned attenuation of
observable inhomogeneities.

The latter claims, indirectly derived from Fig. 5, are supported
by an analysis of spatial correlations. We compute the Pearson cor-
relation coefficient of F with S and P [C(F, S) and C(F, P)] using
statistics over particles. The value of the correlation coefficient is
influenced by both net effects and inhomogeneities. If stretching and
projection were uncorrelated (which is not the case, see Fig. 2), we
would have C(F, S) = σS

σF �P� and a corresponding formula for C(F,
P), which suggests that both averages and standard deviations are
relevant.30

Results for the correlation coefficients are plotted in Fig. 6. For
increasingΦ beyond the crossover, stretching seems to be dominant
in forming the spatial structures of the final density (although this
is not observed for all Reynolds numbers). This suggests that undu-
lations of the surface become negligible compared to the effect of
stretching for increasing Φ, in accordance with the same conclusion
of Ref. 30. In the vicinity of the resonance, projection takes over,
and the correlation with stretching falls to zero. This is presum-
ably due to the increase in the inhomogeneity of projection, without
a similar increase in stretching [see Fig. 5(d)]. Such a result is in

agreement with the qualitative observation of the spatial distribu-
tions in the proximity of the resonance, displayed in Fig. 2, where
the filamentary structures of P and F appear to be well correlated.
The dominance reverts again for Φ < 1, which is in accordance with
the observation that both �F� and σF follow the corresponding fea-
tures of S (both as a function ofΦ andReλ). In relation with Fig. 5, we
explained this via the saturation of P, corresponding to the unit vec-
tor n̂ normal to the (wrapped and contorted) surface taking already
a random orientation, which cannot become more disordered by
decreasing Φ.

In Fig. 7, we present further evidence supporting that the rea-
son for the huge increment in P in vicinity of the resonance (com-
ing from large Φ where the surface is flat, see Fig. 5) is that caus-
tics appear where the density formally diverges. Thus, in Fig. 7(a),
we plot the fraction of particles in caustics (numerically requiring�n̂ ⋅ v� < 0.01) as a function of Φ, observing the two regimes: very
small for large values of Φ and non-negligible values for Φ < 1 and
any values of Reλ. The example of Fig. 7(b) illustrates by a direct
plotting of the positions of the particles on the accumulation plane
that caustics are closely related to inhomogeneities in the sedimented
particles’ distribution. The filamentary pattern of caustic lines in
Fig. 7(b) is recognized to be the same as that of the maxima of P
in Fig. 2 and spreads through the collecting plane.

V. CONCLUSIONS
We performed direct numerical simulations of sinking non-

inertial particles in a turbulent flow, exploring a range of settling
velocities and Reynolds numbers. We focused our attention to the
inhomogeneities of the particle distribution that take place when
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particles released on a plane at a fixed height are collected on a
certain accumulation depth.

Although the Lagrangian dynamics is incompressible, advec-
tion of the two-dimensional surface by the flow and accumulation
on a plane can lead to the emergence of inhomogeneities by a com-
bination of stretching and projection effects.23,30 Our results indicate
the existence of two different regimes from this point of view: the
inhomogeneities grow during the initial stages of the dispersion,
while they undergo attenuation when approaching the long-term
asymptotics of a well-mixed state. With a fixed domain size, the
settling time and thus the degree of inhomogeneity in the accumu-
lated density are controlled by the settling velocity: the initial and the
long-term regimes are realized for large and small settling velocity,
respectively.

Between the two regimes, we have found a “resonant” range
of settling velocity where inhomogeneity can become maximal. The
maximummight approximately be determined by the coincidence of
the settling velocity with the root-mean-square velocity of the flow,
by the coincidence of the typical settling time with the integral time
scale of the flow, or by an interplay of the two circumstances.

The range of settling velocity hosting this resonance-like behav-
ior not only marks a change in behavior of the degree of inho-
mogeneity as a function of the settling velocity itself but also as a
function of the Reynolds number. During the initial transients, a
more complicated flow (higher Reynolds number) enhances inho-
mogeneity, while it facilitates approaching homogeneous mixing in
the regime leading to the long-term asymptotics.

We have also investigated the contributions of the two basic
inhomogeneizing mechanisms in the two regimes. For large set-
tling velocities, when the surface is bended very little without devel-
oping overhangs, stretching is predominant. When getting close
to resonant-like settling velocities, folds appear, yielding projec-
tion caustics in the sedimented density. For this reason, effects
of projection become dominant, and this is responsible for the
crossover in some properties at the resonance-like region. With fur-
ther decrease in the settling velocity, the magnitude of the inho-
mogeneities remains determined by projection, but the increas-
ing effects of projection saturate soon as mixing becomes strong.
The parameter dependence of observable inhomogeneities then
conforms with the increasing homogeneity of stretching as mix-
ing becomes stronger, although summation over a large num-
ber of different branches of the falling particle layer may also be
important.

The above results give an opportunity to comment on some
previous work. Although our setup shows a few important differ-
ences with the problem of sedimentation in mesoscale oceanic flows
addressed in Ref. 30, common points are prominent enough to locate
the mesoscale oceanic setup on the axis of the settling velocity. In
particular, although anisotropy in the velocity field of the ocean is
pronounced (with large differences between horizontal and verti-
cal velocities), one can safely state that the settling velocity of typ-
ical biogenic particles21 is (several times) larger than vertical veloc-
ities of flow. As for the typical sedimentation time, it is the same
order of magnitude as the characteristic time scale of the mesoscale
oceanic flow. These circumstances may mean that the parameters
are not far from the resonance-like maximum of inhomogeneity
and fall into the regime of initial transients identified for Φ > 1
in the present paper. Considerable inhomogeneities appear in the

corresponding oceanic simulations and are enhanced for decreasing
settling velocity and increasing mesoscale turbulence strength.30

Finally, we indicate the relevance of these studies for sinking
biogenic particles in an eddy-resolving oceanic velocity field. A care-
ful study has been performed in Ref. 30 for a mesoscale oceanic flow,
based on the analysis of Ref. 21 of sizes and densities of particles
for which our modeling approach is valid. These biogenic parti-
cles (examples of which are dead plankton bodies, zooplankton fecal
pellets, or small aggregates and marine snow) have typical sizes a
ranging between 10−6 m and 10−3 m and typical densities between
ρp = 1050 kg m−3 and 2700 kg m−3 so that β is bounded between
0.5 and 1.0. Oceanic turbulence is characterized by ε = 10−4 m2/s3− 10−8 m2/s3, ν = 10−6 m2/s,40 for which we obtain a Kolmogorov
length scale η = (ν3�ε)1�4 = 0.3mm − 3 mm, Kolmogorov time
scale τη = (ν/ε)1/2 = 0.1 s–10 s, Kolmogorov velocity uη = (νε)1/4

= 0.3 mm/s–3 mm/s, and acceleration aη = (ε3�ν)1�4 = 30 mm�s2 −
0.03 mm�s2, leading to a Froude number Fr = ×10−6 − ×10−3 and
a Stokes number St = 10−7 − 0.5. The range of Reynolds numbers
used in our numerical simulations indicates that we are dealing with
spatial scales of the flow between 6 cm and 1 m. Note that our con-
figuration represents two relevant situations in this context: one is
sedimentation on the seafloor and the other is the collection of par-
ticles in sediment traps located at a given depth. For this last situa-
tion, the impact of boundary conditions at the bottom is irrelevant.
However, for sedimentation on the seafloor, in the case of a no-slip
boundary condition, a boundary layer close to the bottom is formed
and turbulence is drastically reduced andmodified there, which does
not affect the processes in the bulk.30
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