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Inertial floaters in stratified turbulence
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Abstract – We investigate numerically the dynamics and statistics of inertial particles transported
by stratified turbulence, in the case of particle density intermediate in the average density profile
of the fluid. Under these conditions, particles tend to form a thin layer around the corresponding
fluid isopycnal. The thickness of the resulting layer is determined by a balance between buoyancy
(which attracts the particle to the isopycnal) and inertia (which prevents them from following
it exactly). By means of extensive numerical simulations, we explore the parameter space of the
system and we find that in a range of parameters particles form fractal clusters within the layer.

Copyright c⃝ EPLA, 2018

Introduction. – The interaction between particle iner-
tia and turbulence is a fundamental issue for many prob-
lems in natural sciences and in applications, from cloud
formation in the atmosphere to the dynamics of plankton
in the ocean [1,2]. Most of the studies have considered
the simplified case of inertial particles in homogeneous-
isotropic turbulence [3–5], while more recent works have
investigated the interaction between gravity and turbulent
acceleration [6,7].

In the case of stratified turbulence, gravity plays two
different roles: on the one hand it produces a vertical mo-
tion of inertial particles with respect to the flow which can
increase sedimentation; on the other hand it generates a
layered structure in the flow by reducing the vertical veloc-
ity fluctuations and promoting bidimensionalization [8,9].

The motion of inertial particles in stratified turbulence
has been recently addressed by means of direct numerical
simulations within the Boussinesq approximation of in-
compressible flow [10–12]. In particular, it has been shown
that inertial particles clusterize for a wide range of param-
eters in a simplified overdamped limit in which inertia is
felt only through the effect of gravity. In that limit, it
has been found that vertical confinement due to density
stratification induces a dissipative dynamics of the parti-
cles and this produces a strong fractal clustering on the
isopycnal surface. Fractal clustering depends on a single
parameter, combination of the Stokes time τp of the par-
ticles and the Brunt-Väisälä frequency of the flow. In the
limit of small τp (i.e., small inertia), in which that model
is valid, clustering monotonically increases with τp [12].

In this letter we extend the previous investigation
by considering the Maxey-Riley model for small inertial

particles with finite inertia [13], similar to the model used
in [10]. We confirm the vertical confinement of the par-
ticles induced by stratification and we explain the non-
monotonic dependence on the parameters by introducing
a simple stochastic model for the vertical motion. Small-
scale fractal clustering, quantified by the fractal dimension
of particle distribution, also displays a non-monotonic be-
havior, typical of inertial particles in incompressible flows,
but with a peculiar scaling law for small Stokes numbers
due to the presence of density stratification.

In this paper we will study the behavior of a widely used
model for inertial particles [13] in order to go beyond the
limit of small inertia in the description of layer formation.
First, we will describe the numerical model for the flow
and the particles and introduce the physical parameters
controlling the dynamics. Then, we will present the nu-
merical results on the vertical distribution of the floaters
and the small-scale inhomogeneity. Finally, the results will
be discussed in the conclusions.

Equation of motion for a floater. – We consider a
fluid linearly and stably stratified in the gravity direction
g = (0, 0, −g) with density profile ρ = ρ0−γ(z−θ). Within
the Boussinesq approximation the equations of motion for
the incompressible velocity u (with ∇ · u = 0) and the
density fluctuation θ are

∂tu + u · ∇u = −∇p − N2θ ẑ + ν∇2u + f, (1)
∂tθ + u · ∇θ = w + κ∇2θ, (2)

where ν is the kinematic viscosity, κ is the diffusiv-
ity and N2 = γg/ρ0 is the Brunt-Väisälä frequency. On
the r.h.s., f represents an external forcing, which injects
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energy in the system at a rate ε to maintain a
stationary state, and is confined on a characteris-
tic large-scale ℓf . For simplicity and numerical conve-
nience we only consider the case with Prandtl number
Pr=ν/κ=1. Three dimensionless parameters can be de-
fined in terms of the viscous scale η = (ν3/ϵ)1/4, the
Ozmidov scale ℓ0 = (ϵ/N3)1/2 and the forcing scale ℓf :
the Reynolds number Re = (ℓf/η)4/3, the Froude Number
Fr = ε1/3ℓ2/3

f /N = (ℓ0/ℓf)2/3 and the buoyancy Reynolds
number Reb = Fr2Re = (ℓ0/η)4/3 [9].

Particles are assumed to be spherical with a density
equal to the reference density ρ0 of the fluid. This as-
sumption simplifies the notation without loss of gener-
ality, since the flow is homogeneous. We also assume
that their radius a and their velocity relative to the fluid,
v − u, are small enough to guarantee creeping flow condi-
tions around the particle, i.e., with the particle’s Reynolds
number Rep = |v − u|a/ν ≪ 1. Consistently with these
assumptions, particle position x and velocity v are gov-
erned by a simplified version of the Maxey-Riley equation
for spherical inertial particles [13], as

ẋ = v, (3)

v̇ = β
Du
Dt

− v − u
τp

+ (1 − β)g. (4)

The added mass term in eq. (4) is proportional to the time
derivative along fluid trajectories (denoted by the mate-
rial derivative D/Dt) of the fluid velocity u(x, t) at the
position of the particle. The parameter β = 3ρ/(ρ + 2ρ0)
is a function of the ratio between the particle’s den-
sity ρ0 and the local density ρ of the surrounding fluid,
while τp = a2/(3νβ) is the Stokes time. We remark that in
eq. (4) we neglect the so-called Faxen’s correction and the
Basset’s history term since they give a negligible contribu-
tion for small particles. Taking into account the expression
for the density profile, we can write (1−β)g ≃ 2

3N2(z−θ).
Except from the latter term, where density fluctuations
survive because they are multiplied by the acceleration of
gravity, the assumption β ≃ 1 can be safely made every-
where else in eq. (4). This reasoning is consistent with the
Boussinesq approximation leading to eqs. (1), (2). One
thus obtains

v̇ =
Du
Dt

− v − u
τp

− 2
3
N2(z − θ)ẑ. (5)

The dimensionless parameter which measures the particle
inertia is the Stokes number St = τp/τη, where τη is the
Kolmogorov time scale of the flow.

Numerical simulation. – We have performed direct
numerical simulations of the Boussinesq equation for a
stratified flow, eqs. (1), (2), in a periodic box of size
L = 2π by using a fully dealiased pseudo-spectral method
in space with a second-order Runge-Kutta scheme for
time evolution. Turbulence is maintained in a statisti-
cal steady state by a random δ-correlated in time forcing
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Fig. 1: (Color online) Snapshots of the distribution of iner-
tial floaters with St = 2 over the isopycnal height h, implic-
itly defined by the equation z − θ = 0 for simulations with
Fr = 0.4 (top panel) and Fr = 0.08 (bottom panel). Resolu-
tion M = 256.

acting at large-scale in a narrow band of wave num-
bers peaked at kf ≃ 1/ℓf . We have used different spa-
tial resolutions M = 128, 256, corresponding to Reynolds
numbers Re = (kfη)−4/3 ∼ 36, 82 respectively. We have
considered 4 different values of stratification with Brunt-
Väisälä frequencies corresponding to Froude numbers
Fr = 0.8, 0.6, 0.16, 0.08 and buoyancy Reynolds numbers
Reb in the range 0.2–35. We remark that for this flow the
energy is composed by a kinetic and a potential contribu-
tions and, therefore, the viscous energy dissipation rate is
typically smaller than the energy input rate ε since a frac-
tion of the kinetic energy is converted into potential energy
and removed from the system through the cascade of po-
tential energy [14]. As a consequence, small-scale parame-
ters η and τη have a small dependence upon stratification.

Once the turbulent flow has reached a statistical steady
state, we introduce 20 populations of Mp = 1.6 × 105 in-
ertial tracers each, characterized by different St numbers
between St = 0.01 and St = 100. The initial distribution
for each population is uniform in the domain and their
trajectories are evolved according to eqs. (3)–(5).

Figure 1 plots two snapshots of the particle distribu-
tion (for St = 2.0) together with the isopycnal surface h,
implicitly defined by the equation z = θ(x, t) for two
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Fig. 2: (Color online) Snapshots of the vertical distribution
of inertial floaters with St = 2 for increasing stratification
strength (from top to bottom Fr = 0.8, 0.4, 0.08). Resolution
M = 256.

values of stratification Fr = 0.4 (top panel) and Fr = 0.08
(bottom panel). We observe that the particles distribu-
tion is correlated with the interfacial regions between pos-
itive and negative values of θ. Such a correlation has
been observed previously for inertial particles in homo-
geneous isotropic turbulence [15]. Indeed, once floaters
have reached their isopycnal surface, they are constrained
to perform a quasi-horizontal motion which is unaffected
by gravity and resembles that of the inertial particles ac-
cumulating at the fronts.

The vertical distribution of particles is shown in fig. 2 for
different values of stratification of the velocity field. The
vertical confinement is produced by the last term in eq. (5)
which is proportional to N2, and it is therefore strongly
dependent on stratification. For the most stratified case,
Fr = 0.08, particles are practically confined on the isopyc-
nal surface z = θ, which correspond to the density ρ = ρ0.

Statistics of vertical confinement. To better under-
stand the mechanism of layer formation, we can first con-
sider the limit of small St. For τp → 0, we can take
the overdamped limit of eq. (5) which, after defining,
τ = 3/(2N2τp), becomes

ẋ = u − 1
τ

(z − θ)ẑ. (6)

The comparison with eq. (2) shows that in this limit, ne-
glecting diffusion, the quantity (z − θ) exponentially re-
laxes to zero with the characteristic time τ . Our numerical
simulations confirm this picture, and the variance of the
vertical position σ2

z = ⟨z2⟩ − ⟨z⟩2 (the brackets indicate
a Lagrangian average) decreases from the initial value
σ2

0 = π2/3 (corresponding to a uniform vertical distribu-
tion) and reaches a stationary value after a time of order
τ . In the limit of small St, the particles distribution is
almost homogeneous (with σz = σ0), while for increas-
ing St, σz drops down indicating that a layer of thickness
smaller than the box length is formed.

The stationary root mean square of the vertical posi-
tion as a function of the Stokes number and for different
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Fig. 3: (Color online) Layer thickness σz as a function of St
for different stratification Fr = 0.8 (red squares), Fr = 0.4
(green circles), Fr = 0.16 (blue triangles), Fr = 0.08 (purple
diamonds) and resolution M = 128 (empty symbols) and M =
256 (filled symbols). Dashed lines represent the behavior St1/2

and St−1/2. Inset: behavior of σz as a function of Fr in the
case of maximum confinement.

Froude numbers is shown in fig. 3 which confirms the qual-
itative observation of fig. 2: vertical confinement strongly
depends on stratification, following the fluctuations of the
isopycnal surface z − θ = 0. For each Fr, we find a max-
imum confinement for intermediate values of the Stokes
numbers, St = O(1). This behavior can be understood
since in the limit of small St the last term in eq. (6) is
small (τ is large) and the particle trajectory is close to
that of a fluid particle. In the opposite limit of large St,
particles are unable to follow the rapid fluctuations of the
isopycnal surface and this produces a thick layer around
the isopycnal surface.

The above argument can be made more quantitative by
considering the stochastic version of eq. (5) in which the
fields u and θ are Gaussian noises with zero mean and vari-
ances 2Du and 2Dθ. Formally, this is justified for St ≫ 1,
however, we will see that the model provides the correct
scaling also for small St. The vertical motion of the floaters
is therefore governed by an Ornstein-Uhlenbeck process
for the probability p(z, v) to find a particle at the verti-
cal position z with a vertical velocity v. The associated
Fokker-Planck equation is [16]

∂tp + ∂z(vp) − ∂v

[(
v

τp
− 2N2

3
z

)
p

]
= D∂2

vp (7)

which has as solution a Gaussian distribution. The
marginal distribution of particle positions is also Gaussian
with variance σ2

z = 3τp

2N2 D, where

D =
1
τ2
p

Dw +
4
9
N4Dθ (8)

is the total diffusivity due to Dw, the eddy diffusivity
due to the fluctuating turbulent velocity, and Dθ, the
diffusivity due to the fluctuations of the stratification
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Fig. 4: (Color online) Variance of the layer thickness σ2
z nor-

malized with the Eulerian-averaged variance of the fluctuation
density field ⟨θ2⟩ (top panel) and variance of the vertical parti-
cle velocity σ2

v normalized with the Eulerian-averaged variance
of the vertical fluid velocity ⟨u2

z⟩ (bottom panel) as a function
of St/Reb for different stratification Fr = 0.8 (red squares),
Fr = 0.4 (green circles), Fr = 0.16 (blue triangles), Fr = 0.08
(purple diamonds) and resolutions M = 128 (empty symbols)
and M = 256 (filled symbols).

(we neglect the contribution in D due to the added mass
since it does not change the following argument). The ex-
pression eq. (8) explains the non-monotonic behavior ob-
served in fig. 3. Indeed for small τp the first term on the
r.h.s. of eq. (8) dominates and we get the behavior σ2

z ≃
3Dw/(2N2τp) ∝ RebSt−1 (also observed in [17]), while in
the opposite limit we get σ2

z ≃ 2DθN2τp/3 ∝ Re−1
b St.

Figure 3 shows that σz strongly depends on the strati-
fication, since for small Fr the isopycnal surface to which
particles are attracted is more confined, as shown in fig. 2.
This can be also understood from the stochastic model,
eqs. (7), (8), in the limit of small St since there we have
σz ∝ 1/N which is indeed close to the numerical results
as shown in the inset of fig. 3 which confirms previous
results obtained within the overdamped model [12]. We
observe that in the opposite limit of large St, σz contains
the diffusivity Dθ which is itself dependent on N .

In fig. 4, the variance σ2
z as a function of St/Reb is shown

for different stratifications. For small values St/Reb, nu-
merical results confirm the prediction of the stochastic
model.

Statistics of vertical particle velocity. A similar ar-
gument using the Fokker-Planck equation (6) can be ex-
ploited to study the vertical particle velocity v. As before,
the marginal distribution of particle velocity is Gaussian
with variance given by σ2

v = Dwτ−1
p + 4

9N4τpDθ. In
fig. 4 (bottom panel), the vertical particle velocity v is

10-12

10-10

10-8

10-6

10-4

10-2

10-2 10-1 100 101 102

r1.3

r1.6

r2.1

r2.5

p 2
(r

)

r/η

Fr=0.8
Fr=0.4

Fr=0.16
Fr=0.08

1

2

3

10-2 10-1 100 101 102

D
2

St

Fig. 5: (Color online) Correlation integral p2(r) as a function of
r/η for different values of stratification Fr = 0.8 (red squares),
Fr = 0.4 (green circles), Fr = 0.16 (blue triangles), Fr = 0.08
(purple diamonds) and Stokes number St = 2. Resolution
M = 256. Inset: correlation dimension D2 as a function of St
for different stratification.

observed to increase with St. In the limit of small iner-
tia, the particle velocity has to coincide with the veloc-
ity of the surrounding fluid. In the opposite limit, when
St ≫ 1 the vertical particle velocity slightly differs from
the fluid velocity and it is found to increase approximately
as St1/2. This is very different from the case of inertial par-
ticles, for which it has been observed that particle velocity
decreases as St−1/2 [18].

Small-scale fractal clustering. In addition to the ver-
tical, large-scale inhomogeneity due to layering around the
equilibrium isopycnal, particle dynamics induces small-
scale clustering within the layer, which is evident from the
horizontal section shown in fig. 1. This small-scale cluster-
ing is due to the dissipative dynamics, eq. (5), which gov-
erns the motion of the tracers and it is typical of inertial
particles in incompressible turbulence. As a consequence,
trajectories in phase-space converge onto a dynamic at-
tractor of smaller dimension and, when the attractor has
dimension smaller than the space dimension d = 3, parti-
cles distribute on a fractal set of the same dimension [5].

In order to characterize small-scale clustering we com-
puted the correlation dimension D2 of the particle dis-
tribution, defined through the probability p2(r) ∼ rD2

of finding two particles within a distance r. A homoge-
neous distribution in a d-dimensional space would clearly
give D2 = d. Figure 5 shows p2(r) for different values of
St and Fr. A clear scaling range can be observed be-
tween 0.1η and 10η, from which one obtains a measure
of the correlation dimension D2. The correlation dimen-
sion as a function of St and for various values of Fr is
plotted in the inset. In all cases, the strongest clustering
is observed for intermediate values of St, while extreme
(small or large) values of St produce more homogeneous
layers. A similar phenomenology is also observed in the
small-scale clustering of inertial particles also in homoge-
neous, isotropic turbulence [5].
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One can focus more precisely on the deviations from
homogeneity (for which D2 = 3) by considering the co-
dimension 3 − D2, which is plotted in fig. 6 for the same
values of Fr. This figure clearly shows a power-law in-
crease of the co-dimension with St in the limit of low
inertia.

However, comparison between fig. 6 and analogous mea-
surements in the literature on inertial particles in isotropic
turbulence show a striking difference in the small-St be-
havior of the curves. In the case where buoyancy is ne-
glected one can show that 3 − D2 ∼ St2 for St → 0
while in our case 3 − D2 ∼ St in the limit of small
particles, as one can see in fig. 6. This behavior can
be rationalized following [4,19,20]. In the small-St limit,
one can again use the approximation of eq. (6), in which
the particles are advected by an effective velocity field
v(x, t) = u − (1/τ)(z − θ)ẑ. The number density of the
particles evolves as dn/dt = −(∇ ·v)n = (1−∂zθ)/τ . The
particle distribution will be homogeneous above a cer-
tain scale ℓ ! η, with a constant number density n0,
and fractal on smaller scales due to the chaotic dynam-
ics. If n is sampled with boxes of size r ≪ ℓ, the density
fluctuations measured will be those accumulated along a
Lagrangian trajectory during a time Tr = ln(ℓ/r)/|λ3|,
i.e., the time it takes for chaotic advection to compress
the initial patch along the direction characterized by the
most negative Lyapunov exponent λ3. One therefore has
n2 ∼ n2

0 exp[2
∫ Tr

0 τ−1(1 − ∂zθ)dt]. The Eulerian average
requires to weigh each patch with its volume, which con-
tracts as 1/n so one has

⟨n2⟩ = n2
0

〈
exp

[∫ Tr

0
τ−1(1 − ∂zθ)dt

]〉
∼

(
r

η

)α

. (9)

If we assume the integral to be dominated by the con-
stant term we get α = 1/(|λ3|τ). Of course this re-
quires that |∂zθ| ≪ 1, i.e., that the density fluctuations

are small. This condition is typical for Reb " 1: in this
case, correlations of particle distributions with the gra-
dients of θ do not compromise the validity of the ar-
gument. For small St it is reasonable to assume that
λ3 ∝ τ−1

η + O(1/τ), so given the definition of the correla-
tion dimension, 3 − D2 = α ≃ τη/τ ≃ Re−1

b St. Figure 6
shows that the prediction holds even at relatively large
values of Fr and consequently Reb. In this situation, the
condition of small ∂zθ is frequently violated, leading to
several folds in the isopycnal. However, at moderate Reb,
folds will cover a rather limited area, so that for weak clus-
tering (at small St) their contribution is probably still sub-
leading. It may be interesting to notice that the behavior
of D2 is similar to that of ⟨σz⟩ in fig. 4. In particular, both
observables have a minimum near St ∼ O(1). Moreover,
both quantities shows a plateau in the region of maximum
clustering, which becomes more evident when the fluid is
intensely stratified.

Indeed, if Reb is very small, isopycnals are very close to
flat surfaces and vertical fluctuations are suppressed.

Conclusions. – We investigated the behavior of iner-
tial particles advected by stratified turbulence, in the case
of particle density intermediate within the fluid density
gradient. We have studied how the interplay of gravity
and turbulence produces a vertical confinement of the in-
ertial particles around the isopycnal surface at the particle
density, and how the resulting dissipative dynamics pro-
duces fractal clustering at small scales.

The interaction between particle settling and turbulence
is an essential problem for many systems in the natural
sciences and in applications. In marine and lake biology,
the possibility of organisms to control their position in
the water column is of great importance for the uptake
of nutrients, the access to light and for escaping preda-
tors [21,22]. In the absence of specific mechanisms, the
survival of such organisms must result from the complex
interplay between turbulent mixing and growth [23,24].
A particularly interesting problem is posed by thin phyto-
plankton layers (TPL), aggregations of phytoplankton and
zooplankton at high concentration, with thickness from
centimeters to few meters, extending up to several kilo-
meters horizontally and with a time scale from hours to
days [2]. Various mechanisms have been proposed to ex-
plain such formations, notably depending on the motility
(or absence thereof) of a particular species observed to
form TPLs. In particular, If a cell is neutrally buoyant at
some intermediate depth in the pycnocline, then buoyancy
could lead to the formation TPLs [2,12,25].

The physical and biological implications of fractal clus-
tering observed at small scales are associated with an
increased probability to find particles at small separa-
tions with respect to a homogeneous distribution. Nu-
merical studies inspired by TPLs showed that this
can have important effects on the population dynam-
ics of plankton [26]. In general, small-scale cluster-
ing is relevant in problems where encounter rates are
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important, such as mating and competition for resources
in biology, coalescence and coagulation of droplets in cloud
physics [19,27] and engineering applications [28].
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