Light Front Field Theory And Coherent State Basis

Anuradha Misra

Department of Physics
University of Mumbai
Mumbai, India

Dipartimento di Fisica, Universita di Torino, March 14, 2017
1 Introduction

- Light Front Field Theory
- Method of Asymptotic Dynamics
1 Introduction
 • Light Front Field Theory
 • Method of Asymptotic Dynamics

2 Coherent state formalism in LFFT
1 **Introduction**
- Light Front Field Theory
- Method of Asymptotic Dynamics

2 **Coherent state formalism in LFFT**

3 **Mass renormalization upto $O(e^2)$ in Fock state basis**

Dipartimento di Fisica, Universita di Torino, March 14, 2017
1 Introduction
 • Light Front Field Theory
 • Method of Asymptotic Dynamics

2 Coherent state formalism in LFFT

3 Mass renormalization upto $O(e^2)$ in Fock state basis

4 Mass renormalization upto $O(e^2)$ in the coherent state basis

5 Mass renormalization up to $O(e^4)$ in Fock basis

6 Mass renormalization up to $O(e^4)$ in the coherent state basis

7 All Order Cancellation

8 Improved Method of Asymptotic Dynamics

9 Summary
1 Introduction
- Light Front Field Theory
- Method of Asymptotic Dynamics

2 Coherent state formalism in LFFT

3 Mass renormalization upto $O(e^2)$ in Fock state basis

4 Mass renormalization upto $O(e^2)$ in the coherent state basis

5 Mass renormalization up to $O(e^4)$ in Fock basis

6 Mass renormalization up to $O(e^4)$ in the coherent state basis

7 All Order Cancellation

8 Improved Method of Asymptotic Dynamics

9 Summary
1 Introduction
 - Light Front Field Theory
 - Method of Asymptotic Dynamics

2 Coherent state formalism in LFFT

3 Mass renormalization upto $O(e^2)$ in Fock state basis

4 Mass renormalization upto $O(e^2)$ in the coherent state basis

5 Mass renormalization up to $O(e^4)$ in Fock basis

6 Mass renormalization up to $O(e^4)$ in the coherent state basis

Dipartimento di Fisica, Università di Torino, March 14, 2017
Introduction

- Light Front Field Theory
- Method of Asymptotic Dynamics

Coherent state formalism in LFFT

Mass renormalization up to $O(e^2)$ in Fock state basis
Mass renormalization up to $O(e^2)$ in the coherent state basis

Mass renormalization up to $O(e^4)$ in Fock basis
Mass renormalization up to $O(e^4)$ in the coherent state basis

All Order Cancellation

Improved Method of Asymptotic Dynamics

Summary
1. Introduction
 - Light Front Field Theory
 - Method of Asymptotic Dynamics

2. Coherent state formalism in LFFT

3. Mass renormalization up to $O(e^2)$ in Fock state basis

4. Mass renormalization up to $O(e^2)$ in the coherent state basis

5. Mass renormalization up to $O(e^4)$ in Fock basis

6. Mass renormalization up to $O(e^4)$ in the coherent state basis

7. All Order Cancellation

8. Improved Method of Asymptotic Dynamics
Introduction

- Light Front Field Theory
- Method of Asymptotic Dynamics

Coherent state formalism in LFFT

Mass renormalization upto $O(e^2)$ in Fock state basis

Mass renormalization up to $O(e^4)$ in Fock basis

Mass renormalization up to $O(e^4)$ in the coherent state basis

All Order Cancellation

Improved Method of Asymptotic Dynamics

Summary
What is a light front?

- **Dirac**: “...the three-dimensional surface in space-time formed by a plane wave front advancing with the velocity of light....” . For example, $x^+ = x^0 + x^3 = 0$, is called a front
- **Dirac (1949)**: Three possible forms of relativistic dynamics corresponding to 3 different ways of quantizing corresponding to 3 different surfaces of quantization
 Instant Form, Point Form, Front Form
Light Front Coordinates

\[x^\mu = (x^+, x^-, x^\perp) \]

where

\[x^+ = \frac{(x^0 + x^3)}{\sqrt{2}}, \quad x^- = \frac{(x^0 - x^3)}{\sqrt{2}}, \quad x^\perp = (x^1, x^2) \]

The metric tensor

\[g_{\mu\nu} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \]

Momentum is given by \(p = (p^+, p^-, p^\perp) \)

Mass shell condition \(p^- = \frac{p^2 + m^2}{2p^+} \)
Why quantize on the Light Front?

- Quantization of QCD at fixed light-front time can provide a first principles method for solving non-perturbative QCD
- Dispersion relation $k^- = \frac{k_\perp^2 + m^2}{2k^+}$ is suitable for bound state calculations because
- No square root operator (unlike instant form)
- Dependence of k^- on k_\perp similar to non-relativistic dispersion relation
- Due to the form of the dispersion relation, for an on-shell particle,
 $k^+ \geq 0$ implies that $k^- \geq 0$ and
 $k^+ \leq 0$ implies that $k^- \leq 0$.
- Thus, for physical particles $k^+ \geq 0$ always.
- Simpler vacuum structure
Hamiltonian light front approach

- aims at solving the Hamiltonian eigenvalue problem in the spirit of Tamm Dancoff method
 - $H|\Psi\rangle = \frac{M^2 + P_+^2}{2P_+} |\Psi\rangle$

- Discretized light Cone Quantization (DLCQ):
 - Project the LF Hamiltonian eigenvalue equation on a truncated Fock space
 - Discretize the momentum space
 - Result: a matrix equation which can be solved on a computer
 - DLCQ - used for solving bound state problems in 1 +1 dimension and even for positronium spectrum

- Recently developed method Basis Light Front Quantization- useful in NP bound state calculation
Light Front Field Theory
Method of Asymptotic Dynamics

LF Hamiltonian formalism

- More suitable for bound state calculations as compared to its equal time counterpart
- However, there are problems that need to be addressed before one can do that
- Renormalization is different \(P^- = \frac{P_+^2 + M^2}{2P_+} \)
- IR divergences pose a big challenge
- Need to separate the "true" IR divergences from the "spurious" ones
- Coherent State Formalism provides a solution

Coherent state formalism is based on the method of asymptotic dynamics
Method of Asymptotic Dynamics

The LSZ formalism is based on the assumption

\[H_{as} = \lim_{|t| \to \infty} H = H_0 \]

- Not always true
- \(H_{as} \neq H_0 \)

 , when
 - there are long range interaction
 - incoming and outgoing states are bound states
In the limit $|x^+| \to \infty$, $H \longrightarrow H_{as}$

$$H_{as} = H_0 + V_{as}$$

The total Hamiltonian can be written as

$$H = H_{as} + H'_I$$

where

$$H_{as}(x^+) = H_0 + V_{as}(x^+)$$

The associated x^+ evolution operator $U_{as}(x^+)$ in the Schrodinger representation satisfies the equation

$$i \frac{dU_{as}(x^+)}{dx^+} = H_{as}(x^+)U_{as}(x^+)$$
Coherent states

- The asymptotic evolution operator $\Omega^A(x^+)$ is defined by

$$U_{as}(x^+) = \exp[-iH_0 x^+] \Omega^A(x^+)$$

where

$$\Omega^A_{\pm}(x^+) = T^+ \exp\left[-i \int_{\mp}^0 V_{as}(x^+)dx^+\right]$$

- KF : Use $\Omega^A_{\pm}(x^+)$ to define a new set of asymptotic states

$$|n : coh\rangle = \Omega^A_{\pm}|n\rangle$$

$|n\rangle$ is a Fock state, Ω^A_{\pm} are the asymptotic Möller operators

KF: The transition matrix calculated using such coherent states is IR divergence free in equal time QED.
• Cancellation of IR divergences in QCD (lowest order)

• Coherent States in LFFT
 Relevance of coherent state formalism in Light Front Field Theory (LFFT)

• Coherent state formalism in LFFT : Cancellation of IR divergences in 3-point vertex correction in QED and QCD at one loop level.
IR Divergences in LFFT

- Dispersion relation: \(k^- = \frac{k_\perp^2 + m^2}{2k^+} \)

 Two kinds of IR divergences in LFFT

- Spurious IR divergences

 \[k^+ \to 0 \]

- True IR divergences

 \[k_\perp \to 0, \; k^+ \to 0 \]

The coherent state method provides an alternative way of treating the true IR divergences.
Coherent State Formalism in LFFT

- H_{as} is evaluated by taking the limit $|x^+| \to \infty$ in $\exp[-i(p_1^- + p_2^- + \cdots + p_n^-)x^+]$ of the interaction Hamiltonian H_{int}.

- If $(p_1^- + p_2^- + \cdots + p_n^-) \to 0$ for some vertex, then the corresponding term in H_{int} does not vanish in large x^+ limit.

- Use KF method to construct asymptotic Hamiltonian and coherent state basis.
Light-Front QED in LF gauge

- The LFQED Hamiltonian \((P) \) in LF gauge is

\[
H_I(x^+) = V_1(x^+) + V_2(x^+) + V_3(x^+)
\]

where

- \(V_1(x^+) \) is the standard three point vertex of QED
- \(V_2(x^+) \) is an instantaneous 4-point interaction which appears when we write the fermionic part of \(P^- \) in terms of independent component shown - hence we eliminate it and write \(P^F_- \) in terms of \(\psi_+ \) only
- \(V_3(x^+) \) is an instantaneous 4-point interaction which appears when we write \(A^\mu \) only in terms of physical degrees of freedom
Light-front QED Hamiltonian in the light-front gauge \((A^+=0)\)

\[
P^- = H \equiv H_0 + V_1 + V_2 + V_3 ,
\]

Here

\[
H_0 = \int d^2x_\perp dx^- \left\{ \frac{i}{2} \bar{\xi} \gamma^- \lessdot \partial^- \xi + \frac{1}{2} (F_{12})^2 - \frac{1}{2} a_+ \partial^- \partial_k a_k \right\}
\]

\[
V_1 = e \int d^2x_\perp dx^- \bar{\xi} \gamma^\mu \xi a_\mu
\]

\[
V_2 = -\frac{i}{4} e^2 \int d^2x_\perp dx^- dy^- \epsilon(x^- - y^-)(\bar{\xi} a_k \gamma^k)(x) \gamma^+(a_j \gamma^j \xi)(y)
\]

\[
V_3 = -\frac{e^2}{4} \int d^2x_\perp dx^- dy^- (\bar{\xi} \gamma^+ \xi)(x)|x^- - y^-|(\bar{\xi} \gamma^+ \xi)(y)
\]
Introduction
Coherent state formalism in LFFT
Mass renormalization up to $O(e^2)$ in Fock state basis
Mass renormalization up to $O(e^2)$ in the coherent state basis
Mass renormalization up to $O(e^4)$ in Fock basis
Mass renormalization up to $O(e^4)$ in the coherent state basis
All Order Cancellation
Improved Method of Asymptotic Dynamics
Summary

Light Front Field Theory
Method of Asymptotic Dynamics

QED
\(\xi(x) \) and \(a_\mu(x) \) can be expanded in terms of creation and annihilation operators as

\[
\xi(x) = \int \frac{d^2 p_\perp}{(2\pi)^{3/2}} \int \frac{dp^+}{\sqrt{2p^+}} \sum_{s=\pm \frac{1}{2}} \left[u(p, s) e^{-i(p^+ x^- - p_\perp \cdot x_\perp)} b(p, s, x^+)
\right. \\
+ \left. v(p, s) e^{i(p^+ x^- - p_\perp \cdot x_\perp)} d^\dagger(p, s, x^+) \right],
\]

\[
a_\mu(x) = \int \frac{d^2 q_\perp}{(2\pi)^{3/2}} \int \frac{dq^+}{\sqrt{2q^+}} \sum_{\lambda=1,2} \epsilon_\mu^\lambda(q) \left[e^{-i(q^+ x^- - q_\perp \cdot x_\perp)} a(q, \lambda, x^+) \right. \\
+ \left. e^{i(q^+ x^- - q_\perp \cdot x_\perp)} a^\dagger(q, \lambda, x^+) \right],
\]

operators satisfy

\[
\{ b(p, s), b^\dagger(p', s') \} = \delta(p^+ - p'^+) \delta^2(p_\perp - p'_\perp) \delta_{ss'} = \{ d(p, s), d^\dagger(p', s') \},
\]

\[
[a(q, \lambda), a^\dagger(q', \lambda')] = \delta(q^+ q'^+) \delta^2(q_\perp - q'_\perp) \delta_{\lambda \lambda'}.
\]
Light cone time dependence of V_1 is of the form

$$V_1(x^+) = e \sum_{i=1}^{4} \int d\nu_i [e^{-i\nu_i(1)x^+} \tilde{h}_i(\nu_i) + e^{i\nu_i(1)x^+} \tilde{h}^\dagger_i(\nu_i)]$$

where $\tilde{h}_i(\nu_i)$ are the QED interaction vertices:

$$\tilde{h}_1 = \sum_{s, s', \lambda} b^\dagger(\bar{p}, s') b(p, s) a(k, \lambda) \bar{u}(\bar{p}, s') \gamma^\mu u(p, s) \epsilon^\lambda_\mu,$$

$$\tilde{h}_2 = \sum_{s, s', \lambda} b^\dagger(\bar{p}, s') d^\dagger(p, s) a(k, \lambda) \bar{u}(\bar{p}, s') \gamma^\mu v(p, s) \epsilon^\lambda_\mu,$$

$$\tilde{h}_3 = \sum_{s, s', \lambda} d(\bar{p}, s') b(p, s) a(k, \lambda) \bar{v}(\bar{p}, s') \gamma^\mu u(p, s) \epsilon^\lambda_\mu,$$

$$\tilde{h}_4 = \sum_{s, s', \lambda} d^\dagger(\bar{p}, s') d(p, s) a(k, \lambda) \bar{v}(\bar{p}, s') \gamma^\mu v(p, s) \epsilon^\lambda_\mu.$$
\(\nu_i \) is the light cone energy transferred at the vertex \(\tilde{h}_i \).

The integration measure is given by
\[
\int d\nu = \frac{1}{(2\pi)^{3/2}} \int \frac{[dp][dk]}{\sqrt{2\bar{p}^+}} ,
\]
\(\bar{p}^+ \) and \(\bar{p}_\perp \) being fixed at each vertex by momentum conservation.

For example
\[
\nu_1^{(1)} = p^- + k^- - \bar{p}^- = \frac{p \cdot k}{p^+ + k^+}
\]
is the energy transfer at \(ee'\gamma \) vertex.
- At asymptotic limits, non-zero contributions to $H_i(x^+)$ come from regions where ν_i goes to zero.
- ν_2 and ν_3 are always non-zero, and hence, \tilde{h}_2 and \tilde{h}_3 do not appear in the asymptotic Hamiltonian.
- The 3-point asymptotic Hamiltonian is defined by

$$V_{1as}(x^+) = e \sum_{i=1,4} \int d\nu_i^{(1)} \Theta_\Delta(k)[e^{-i\nu_i^{(1)} x^+} \tilde{h}_i^{(1)}(\nu_i^{(1)}) + e^{i\nu_i^{(1)} x^+} \tilde{h}_i^{\dagger}(\nu_i^{(1)})]$$

where $\Theta_\Delta(k)$ defines the asymptotic region i.e the region in which $\nu_i^{(1)}$ is zero.
- $\Theta_\Delta(k)$ is 1 in the asymptotic region and 0 elsewhere.
• Define the asymptotic region to consist of all points in the phase space for which

\[\frac{p \cdot k}{p^+} < \Delta, \]

where \(\Delta \) is an energy cutoff which may be chosen to be related to the experimental resolution.

• For simplicity, choose a frame \(p_\perp = 0 \). In this frame the above condition reduces to

\[\frac{p^+ k_\perp^2}{2k^+} + \frac{m^2 k^+}{2p^+} < \Delta, \]

where \(\Delta = p^+ \Delta E \).
Sufficient to choose a subregion of the above mentioned region as the asymptotic region.

Define this subregion to be consisting of all points \((k^+, k_\perp)\) satisfying:

\[\begin{align*}
k_\perp^2 &< \frac{k^+ \Delta}{p^+}, \\
k^+ &< \frac{p^+ \Delta}{m^2}.
\end{align*}\]

This choice of the asymptotic region leads to

\[\Theta_\Delta(k) = \theta \left(\frac{k^+ \Delta}{p^+} - k_\perp^2 \right) \theta \left(\frac{p^+ \Delta}{m^2} - k^+ \right)\]
Asymptotic states

\[\Omega_{\pm}^A|n: p_i\rangle = \exp \left[-e \int dp^+ d^2 p_\perp \sum_{\lambda=1,2} [d^3 k][f(k, \lambda : p)a^\dagger(k, \lambda) - f^*(k, \lambda : p)a(k, \lambda)] + e^2 \int dp^+ d^2 p_\perp \sum_{\lambda_1, \lambda_2=1,2} [d^3 k_1][d^3 k_2] \right. \\
\left. [g_1(k_1, k_2, \lambda_1, \lambda_2 : p)a^\dagger(k_2, \lambda_2)a(k_1, \lambda_1) - g_2(k_1, k_2, \lambda_1, \lambda_2 : p)a(k_2, \lambda_2)a^\dagger(k_1, \lambda_1)]\rho(p) \right] |n: p_i\rangle \]

[AM, Phys. Rev. D 50, 4088 (1994)]
Introduction

Coherent state formalism in LFFT
Mass renormalization up to $O(e^2)$ in Fock state basis
Mass renormalization up to $O(e^2)$ in the coherent state basis
Mass renormalization up to $O(e^4)$ in Fock basis
Mass renormalization up to $O(e^4)$ in the coherent state basis

All Order Cancellation
Improved Method of Asymptotic Dynamics
Summary

Here

\[[d^3 k] = \int \frac{d^2 k_\perp}{(2\pi)^{3/2}} \int \frac{dk^+}{\sqrt{2k^+}} \]

\[
 f(k, \lambda; p) = \frac{p_\mu \epsilon^\mu_\lambda(k)}{p \cdot k} \theta\left(\frac{k^+ \Delta}{p^+} - k^2_\perp\right) \theta\left(\frac{p^+ \Delta}{m^2} - k^+\right),
\]

\[
 f(k, \lambda; p) = f^*(k, \lambda; p),
\]
One fermion coherent state

\[|p, \sigma : f(p)\rangle = \exp \left[-e \sum_{\lambda=1,2} [d^3 k] [f(k, \lambda : p) a^\dagger(k, \lambda) - f^*(k, \lambda : p) a(k, \lambda)] + e^2 \sum_{\lambda_1, \lambda_2=1,2} [d^3 k_1][d^3 k_2] [g_1(k_1, k_2, \lambda_1, \lambda_2 : p) a^\dagger(k_2, \lambda_2) a(k_1, \lambda_1)] - g_2(k_1, k_2, \lambda_1, \lambda_2 : p) a(k_2, \lambda_2) a^\dagger(k_1, \lambda_1) \right] |p, \sigma\rangle \]
The transition matrix is given by

\[T = V + V \frac{1}{p^- - H_0} V + \cdots \]

The electron mass shift is obtained by calculating \(T_{pp} = \langle p, s \vert T \vert p, s \rangle \)

\[\delta m^2 = p^+ \sum_s T_{pp} \]

We expand \(T_{pp} \) in powers of \(e^2 \) as

\[T_{pp} = T^{(1)} + T^{(2)} + \cdots \]

For example

\[T^{(1)}_{pp} \equiv T^{(1)}(p, p) = \langle p, s \vert V_1 \frac{1}{p^- - H_0} V_1 \vert p, s \rangle + \langle p, s \vert V_2 \vert p, s \rangle \]
Introduction

Coherent state formalism in LFFT

Mass renormalization up to \(O(e^2) \) in Fock state basis

Mass renormalization up to \(O(e^2) \) in the coherent state basis

Mass renormalization up to \(O(e^4) \) in Fock basis

Mass renormalization up to \(O(e^4) \) in the coherent state basis

All Order Cancellation

Improved Method of Asymptotic Dynamics

Summary

\[O(e^2) \] self energy correction in Fock basis

\[O(e^4) \] self energy correction in Fock basis

\[\langle \text{Diagrams for } O(e^2) \text{ self energy correction in Fock basis corresponding to } T_1 \rangle \]

\[T_{pp}^{(1)} \equiv T^{(1)}(p, p) = \langle p, s | V_1 \frac{1}{p^- - H_0} V_1 | p, s \rangle + \langle p, s | V_2 | p, s \rangle \]

In the limit \(k_1^+ \to 0, k_1^\perp \to 0, \)

\[(\delta m_{1a}^2)^{IR} = -\frac{e^2}{(2\pi)^3} \int d^2 k_1^\perp \int \frac{dk_1^+}{k_1^+} \frac{(p \cdot \epsilon(k_1))^3}{(p \cdot k_1)} \]

Dipartimento di Fisica, Universita di Torino, March 14, 2017
$O(e^2)$ self energy correction in coherent state basis

![Diagram of Feynman diagrams](image)

- Additional diagrams in coherent state basis for $O(e^2)$ self energy correction corresponding to T_2.

$$ T'(p, p) = \langle p, s : f(p) | V_1 | p, s : f(p) \rangle $$

- Calculated using coherent state properties

$$ a(k, \rho) | 1 : p_i \rangle = - \frac{e}{(2\pi)^{3/2}} \frac{f(k, \rho : p_i)}{\sqrt{2k^+}} | 1 : p_i \rangle, $$

$$ a^\dagger(k, \rho) | 1 : p_i \rangle = \frac{e}{(2\pi)^{3/2}} \frac{f^*(k, \rho : p_i)}{\sqrt{2k^+}} | 1 : p_i \rangle \mathrel{\leftrightarrow} | 2 : p_i, k_i \rangle. $$
Extra contribution in coherent state basis

\[T'(p, p) = \frac{e^2}{(2\pi)^3} \int \frac{d^2 k_{1\perp}}{2p^+} \int \frac{dk_1^+}{2k_1^+} \bar{u}(\bar{p}, s') \epsilon^\lambda(k_1) u(p, s)f(k_1, \lambda : p) \]

where

\[f(k, \lambda : p) = \frac{p_\mu \epsilon^\mu_\lambda(k)}{p \cdot k} \theta \left(\frac{k^+ \Delta}{p^+} - k_{\perp}^2 \right) \theta \left(\frac{p^+ \Delta}{m^2} - k^+ \right) \]

\[(\delta m^2)' = \frac{e^2}{(2\pi)^3} \int d^2 k_{1\perp} \int \frac{dk_1^+}{k_1^+} \frac{(p \cdot \epsilon(k_1))^2 \Theta_{\Delta}(k_1)}{p \cdot k_1} \]

Equal and opposite to Fock space expression in asymptotic region
Electron mass correction in Fock basis up to $O(e^4)$ to self energy is given by $T^{(2)} = T_3 + T_4 + T_5 + T_6 + T_7$

where

$T_3 = \langle p, s | V_1 \frac{1}{p - H_0} V_1 \frac{1}{p - H_0} V_1 \frac{1}{p - H_0} V_1 | p, s \rangle$

$T_4 = \langle p, s | V_1 \frac{1}{p - H_0} V_1 \frac{1}{p - H_0} V_2 | p, s \rangle$

$T_5 = \langle p, s | V_1 \frac{1}{p - H_0} V_2 \frac{1}{p - H_0} V_1 | p, s \rangle$

$T_6 = \langle p, s | V_2 \frac{1}{p - H_0} V_1 \frac{1}{p - H_0} V_1 | p, s \rangle$

$T_7 = \langle p, s | V_2 \frac{1}{p - H_0} V_2 | p, s \rangle$

$O(e^4)$ self energy correction in Fock basis corresponding to T_3.

\begin{align*}
\text{(a)} & \quad (p, s) \quad\quad (p, \sigma) \\
\text{(b)} & \quad (p, s) \quad\quad (p, \sigma) \\
\text{(c)} & \quad (p, s) \quad\quad (p, \sigma)
\end{align*}
IR divergences in these diagrams appear when

I \[p \cdot k_1 \to 0 \text{ i.e. } k_1^+ \to 0, k_{1\perp} \to 0, \text{ but } p \cdot k_2 \neq 0. \]

II \[p \cdot k_2 \to 0 \text{ i.e. } k_2^+ \to 0, k_{2\perp} \to 0, \text{ but } p \cdot k_1 \neq 0. \]

III \[p \cdot k_1 \to 0 \text{ and } p \cdot k_2 \to 0 \text{ i.e. } k_1^+ \to 0, k_{1\perp} \to 0, \]
\[k_2^+ \to 0, k_{2\perp} \to 0. \]
$O(e^4)$ self energy correction in Fock basis corresponding to T_4, T_5 and T_6 respectively.
Mass renormalization up to $O(e^4)$ in the coherent state basis

- Additional contributions at $O(e^4)$ in coherent state basis
 \[T^{(2)} + T'_8 + T'_9 + T'_{10} + T'_{11} \]

 where

 \begin{align*}
 T'_8 &= \langle p, s : f(p) | V_1 \frac{1}{p - H_0} V_1 \frac{1}{p - H_0} V_1 | p, s : f(p) \rangle \\
 T'_9 &= \langle p, s : f(p) | V_1 \frac{1}{p - H_0} V_1 | p, s : f(p) \rangle \\
 T'_{10} &= \langle p, s : f(p) | V_1 \frac{1}{p - H_0} V_2 | p, s : f(p) \rangle + \langle p, s : f(p) | V_2 \frac{1}{p - H_0} V_1 | p, s : f(p) \rangle \\
 T'_{11} &= \langle p, s : f(p) | V_2 | p, s : f(p) \rangle.
 \end{align*}
Additional diagrams in coherent state basis for $O(e^4)$ self energy correction corresponding to T_8 and T_9 respectively.
Additional diagrams in coherent state basis for $O(e^4)$ self energy correction corresponding to T_{10}.
Mass renormalization up to $O(e^4)$ in Fock state basis
Mass renormalization up to $O(e^4)$ in the coherent state basis

All Order Cancellation
Improved Method of Asymptotic Dynamics

Summary

Additional diagrams in coherent state basis for $O(e^4)$ self energy correction corresponding to T_{11}.

Dipartimento di Fisica, Universita di Torino, March14, 2017
\[(\delta m^2)_3 + (\delta m^2)_8 + (\delta m^2)_9\] is IR finite.
\[(\delta m^2)_4 + (\delta m^2)_4 + (\delta m^2)_6 + (\delta m^2)_{10} + (\delta m^2)_{11}\] is IR finite.
Cancellation of true IR divergences to all orders

- Use method of induction
 Yennie et al, Annals of Physics 13, 379 (1961): Real virtual cancellation of IR divergences to all orders
- LFQED: divergences cancel to $O(e^4)$
- Assume IR divergences cancel up to $O(e^{2n})$
- Express $O(e^{(2n+2)})$ contribution in terms of IR finite $O(e^{2n})$ matrix elements
- Show the additional divergences also cancel in coherent state basis
• Represent the $O(e^{2n})$ IR finite amplitude by a blob i.e. a blob represents the sum of the Fock and coherent state contributions to the self energy correction that being added up together give IR finite amplitude.

• The blob is of $O(e^{2n})$ and contains n photon lines
• Express the $O(e^{2(n+1)})$ contributions in terms of this blob
• Show the cancellation of IR divergences in $O(e^{2(n+1)})$ using the coherent state basis.
General expression for transition matrix element in $O(e^{2n})$ is a sum of terms of the form:

$$T_j^{(n)} = -\frac{e^{2n}}{2p^+(2\pi)^3} \int \prod_{i=1}^{n} \frac{d^3k_i}{2k_i^+ 2p_{2i-1}^+}$$

$$\times \bar{u}(p_1, s_1)\ell_1(p_1 + m)\ell_2(p_2 + m) \cdots \cdots \cdots (p_i + m)\ell_i u(p_i, s_i)$$

$$\prod_{r=1}^{n} (p^- - p_r^- - \sum_{i=1}^{n} k_i)$$

$$T^{(n)} = \sum_j T_j^{(n)} = \sum_j \frac{\bar{u}(\bar{p}, s').M^{(j)}_n u(p, s)}{D(j)}$$

where j is summed over all possible diagram in $O(e^{2n})$ and will be assumed to be IR divergence free.

Here,

$$D^{(j)} = \prod_{r=1}^{n} D^{(j)}$$
O(e^4) revisited

- **O(e^2)** correction

\[T^{(2)} = \sum_j \frac{\bar{u}(\bar{p}, s') M_2^{(j)} u(p, s)}{D(j)} \]

Figure: IR finite \(O(e^2)\) blob with an external photon line results into \(O(e^4)\) diagram
In our new notation it is,

\[T_{3a}^{(2)} = T_{3b}^{(2)} + T_{3c}^{(2)} \]

\[= \frac{e^2}{(2\pi)^3} \int \frac{d^3 k_1}{2k_1^+} \bar{u}(p, \sigma)\epsilon(k_1)(\not{\rho}_1 + m)M_2^{(j)}(\not{\rho}_1 + m)\epsilon(k_1)u(p, s) \]

\[\frac{(p \cdot k_1)^2 D(j)}{(p \cdot k_1)^2 D(j)} \]

Blob is IR finite

IR divergences can appear "only" from the vanishing of energy denominators of the kind \(p^- - k_1^- - (p - k_1) \)

Additional contribution in \(O(e^4) \) in coherent state basis
In coherent state basis, we have extra contributions

\[T_{4a}^{(2)} = -\frac{e^2}{(2\pi)^3} \int \frac{d^3k_1}{2k_1^+} \frac{\bar{u}(p, \sigma) \gamma(k_1)(p_1 + m) M_j^{(j)} u(p, s)(p \cdot k_1)}{(p \cdot k_1)^2 D(j)} \]

which cancel the Fock contribution in the limit \(k^+ \to 0, k_\perp \to 0 \).
Introduction
Coherent state formalism in LFFT

- Mass renormalization up to $O(e^2)$ in Fock state basis
- Mass renormalization up to $O(e^2)$ in the coherent state basis
- Mass renormalization up to $O(e^4)$ in Fock basis
- Mass renormalization up to $O(e^4)$ in the coherent state basis

All Order Cancellation
Improved Method of Asymptotic Dynamics
Summary
• Same holds for other diagrams as well

To construct an \(O(e^{2n+2}) \) diagram in Fock basis, we can add a photon to nth order blob in three different ways.
Introduction
Coherent state formalism in LFFT
Mass renormalization up to $O(e^2)$ in Fock state basis
Mass renormalization up to $O(e^2)$ in the coherent state basis
Mass renormalization up to $O(e^4)$ in Fock basis
Mass renormalization up to $O(e^4)$ in the coherent state basis

All Order Cancellation
Improved Method of Asymptotic Dynamics
Summary
The contributions from Figs. (a), (b) and (c) are given by

\[
T^{(n+1)}_{6a} = \frac{e^2}{(2\pi)^3} \int \frac{d^3q}{2q^+} \frac{\bar{u}(\bar{p}, \sigma)\epsilon(q)(P + m)M_{n}^{(j)}(P + m)\epsilon(q)u(p, s)}{(p \cdot q)^2D^{(j)}}
\]

\[
T^{(n+1)}_{6b} = -\frac{e^2}{(2\pi)^3} \int \frac{d^3q}{2q^+} \frac{\bar{u}(\bar{p}, s')M_{n}^{(j)}(\bar{p}' + m)\epsilon(q)(P + m)\epsilon(q)u(p, s)}{(p \cdot q)(p^- - p'^-)D^{(j)}}
\]

\[
T^{(n+1)}_{6c} = \frac{e^2}{(2\pi)^3} \int \frac{d^3q}{2q^+} \frac{\bar{u}(\bar{p}, s')M_{n}^{(j)}(P + m)\epsilon(q)u(p, s)}{(p \cdot q)D^{(j)}}
\]

where \(P = p - q\)
Note that in case of overlapping diagram, the structure is different.

However, one can show that for our purpose it is sufficient to consider the limit \(q^+ \to 0, q_\perp \to 0 \), in which case

\[
M^{\ell(j)}_n = \ell(k_1)(P_1 + m)\ell(k_2)(P_2 + m) \cdots \ell(k_\ell)(P_\ell + m)\ell(q)\ell(p_{\ell+1} + m) \cdots
\]

Also, the energy denominators corresponding to the intermediate states will be

\[
D^{(j)} = (p^- - p_1^- - k_1^- - q^-)(p^- - p_2^- - k_1^- - k_2^- - q^-) \cdots
\]

\[
(p^- - p_\ell^- - \sum_i k_i^- - q^-) \cdots \cdots \cdots
\]

The additional contributions in coherent state basis are given by the following diagrams
Introduction
Coherent state formalism in LFFT
Mass renormalization up to $O(e^2)$ in Fock state basis
Mass renormalization up to $O(e^4)$ in the coherent state basis
Mass renormalization up to $O(e^6)$ in Fock basis
Mass renormalization up to $O(e^4)$ in the coherent state basis

All Order Cancellation
Improved Method of Asymptotic Dynamics
Summary

Figure:
Dipartimento di Fisica, Universita di Torino, March 14, 2017
Coherent state formalism in LFFT
Mass renormalization up to $O(e^2)$ in Fock state basis
Mass renormalization up to $O(e^2)$ in the coherent state basis
Mass renormalization up to $O(e^4)$ in Fock basis
Mass renormalization up to $O(e^4)$ in the coherent state basis

All Order Cancellation
Improved Method of Asymptotic Dynamics

Summary

\[
T_{7a}''(n+1) = -\frac{e^2}{(2\pi)^3} \int \frac{d^3q}{2q^+} \frac{\bar{u}(\bar{p}, s')\xi(q)(P + m)M^{(j)}_n u(p, s)(p \cdot \epsilon) \Theta_\Delta(q)}{(p \cdot q)^2 D^{(j)}}
\]

\[
T_{7b}''(n+1) = \frac{e^2}{(2\pi)^3} \int \frac{d^3q}{2q^+} \frac{\bar{u}(\bar{p}, s')M^{(j)}_n (P' + m)\xi(q)u(p, s)(p \cdot \epsilon) \Theta_\Delta(q)}{(p \cdot q)(p^- - p'^-) D^{(j)}}
\]

\[
T_{7c}''(n+1) = -\frac{e^2}{(2\pi)^3} \int \frac{d^3q}{2q^+} \frac{\bar{u}(\bar{p}, s')M^{(j)}_n u(p, s)(p \cdot \epsilon) \Theta_\Delta(q)}{(p \cdot q) D^{(j)}}
\]

In the limit, $k^+ \to 0, k_\perp \to 0, P\xi(q) \to p \cdot \epsilon$, the coherent state contribution exactly cancels the IR divergences in the original (Fock space) diagrams. Thus by induction, the IR divergences cancel to all orders.
Improved Method of Asymptotic Dynamics

- KF method does not work for theories involving 4-point interaction
- Asymptotic states in QCD are bound states
- In QCD a recursive proof of cancellation of IR divergences cannot be obtained using just KF method
- Asymptotic Hamiltonian should contain the confining potential in case asymptotic states are bound states

An ‘improved’ method of asymptotic dynamics should take into account the separation of particles also

Anuradha Misra, Few-Body Systems 36, 201-204 (2005).]
Improved method of asymptotic dynamics (Horan, Lavelle & McMullan 2000)

- based on asymptotic properties of matrix elements instead of operators
- takes into account appropriate boundary conditions corresponding to the separation of particles at large distances
- first criteria suggests not only the energy denominators but their partial derivatives also become zero

For theory involving 4-point interactions, KF method does not work, but the improved method leads to cancellation of IR divergences
Criteria in the Method of Asymptotic Dynamics

- In LFQED,
 \[\nu_i = p^- - k^- - (p - k)^- \]

- Condition to obtain the asymptotic region KF approach \(\implies \nu_i = 0 \)

- Improved Method \(\implies \frac{\partial \nu_i}{\partial p^-} = \frac{\partial \nu_i}{\partial p^+} = \frac{\partial \nu_i}{\partial k^-} = \frac{\partial \nu_i}{\partial k^+} = 0 \)

- For QED, both the criteria lead to same asymptotic region for constructing coherent states

- For LFQCD, one may need to use the criteria of separation of particles?
Future directions

- Develop the improved method of asymptotic dynamics in LFFT for simple model like Yukawa theory, ϕ^4 theory
- Extend this method to QCD to analyze the nature of IR divergences
- Construct an artificial potential that is needed for bound state calculation in LFQCD
- Combine the coherent state method with the BLFQ methods (J.Vary et al) to deal with the IR problem in LF bound state calculations
To summarize

- The true IR divergences are cancelled to all orders when coherent state basis is used to calculate the matrix elements in lepton self energy correction in light-front QED.

- Apply improved method to LFQCD beyond one loop order to obtain IR finite amplitudes

- Connection between asymptotic dynamics and IR divergences needs to be investigated

- Combine coherent state method with BLFQ methods (J.Vary et al, Phys. Rev. D 91, 105009 (2015)) for practical use of coherent state methods

GRAZIE