
Phy100 v1.0 

Phy100 is a spin-off from the GbPhy project, and is designed to operate with PHY devices limited to 

10/100Mbps bandwidth which are typically present on lower cost evaluation boards such as the Digilent 

boards Nexys3 (SMSC LAN8710A) and Arty (Texas Instruments DP83848J). It provides a robust UDP-based 

Ethernet control link based on a fixed length 8-byte protocol whereby every 8-byte message always results 

in a corresponding 8-byte reply thus allowing the verification of, and correction for, eventual packet loss. 

For improved efficiency, up to 64 messages can be included in a single packet. 

 

UDP addresses and ports 

The control link is designed to allow multiple addresses selected by 3 bits of input, ‘board_id’, typically 

connected to DIP switches or header pins. With ‘board_id’ set to “000” the board responds to the IP 

address 192.168.1.10 with commands on port 10000. With ‘board_id’ set to “001” the board responds to 

the IP address 192.168.1.11 with commands on port 10001, and so on up to board_id “111”. MAC 

addresses used are typical MAC addresses used by Xilinx, starting at 00-0A-35-00-01-02. 

 

Hardware functionality 

The project is structured as shown in Figure 1. 

 

 

Figure 1:  Example project schematic (in this case the 25MHz reference clock is supplied by a crystal 

oscillator on the board, alternatively the clock generator can be used to generate it) 

 

The “Phy controller” block makes sure that the link is set to 100Mbps Full duplex at startup (for example, 

the Nexys 3 board only advertises 100Mbps Half duplex as default and there is no collision handling logic). 

 

The “Packet parser” block interacts with the PHY device to receive and transmit Ethernet packets. It 

discards packets with incorrect IP or FCS checksums (the UDP checksum is ignored). It decodes and 

responds internally to ARP requests and ICMP ping. It passes the payload of correctly addressed UDP 

packets to the “Message parser” block. It does not respond to any other Ethernet protocols. When it 



receives reply data from the “Message parser”, it encodes this data into a UDP packet and transmits it to 

the address contained in the corresponding command packet. 

 

The “Message parser” block decodes the 8-byte protocol, maintains a copy of the last command packet 

received which can be read back, provides monitor functionality for Ethernet data quality, and allows 

programmatic interaction with the user logic. As previously noted, up to 64 commands can be 

concatenated in a single packet, all commands in a single packet will be executed followed by a single reply 

packet. The protocol was originally developed for projects using the Microblaze soft CPU to provide 

Ethernet functionality, with various software modules as well as hardware interaction. Essentially the first 

four bytes are software-related (and documented in the project file ‘network_commands’) and when set to 

the appropriate values will lead to the last four bytes being exchanged with hardware. As such the 

“Message parser” block connects to the user logic with the following ports: 

 

 command_available    : out std_logic; 

 command_contents    : out std_logic_vector(31 downto 0); 

 command_reply_available   : in  std_logic; 

 command_reply_contents   : in  std_logic_vector(31 downto 0); 

 

Quite simply, ‘command_available’ is set to ‘1’ for one clock cycle when ‘command_contents’ contains a 

new command. The user logic must then act on this command and, once the operation is complete, it must 

provide its reply in ‘command_reply_contents’ and  signal the availability of that reply by setting 

‘command_reply_available’ to ‘1’ for one clock cycle. There must always be exactly one reply per 

command. 

 

Command protocol 

At this point the user is free to use command_contents and command_reply_contents as desired. However 

the example project goes on to provide further structure allowing for multiple hardware sub-system blocks. 

The 32-bit command from ‘message_parser’ is subdivided as 

 

command_contents(31 downto 28) => sub-system target 

command_contents(27 downto 20) => sub-system command id 

command_contents(19 downto 0)  => sub-system command data 

 

In the example project the only sub-system is the “hardware_controller”. Command codes are documented 

in the file ‘command_processor_codes’ and test programs are available in the Phy100 and Phy100Test 

LabVIEW projects. 

 

Figure 2 shows an example of communication. In this case, four hardware commands are sent in a single 

packet and four corresponding replies are received in a single packet. 

 

 

Figure 2:  Command and reply strings 



The commands used here are write-only commands and so, by construction, the reply is identical to the 

command. Note to users unfamiliar with LabVIEW that the strings are represented in “Hex display” format 

and are simply arrays of bytes (not ASCII, no delimiters). 

 

The first command x”01010000102004FF” can be deconstructed as follows: 

x”01”:  “CPU” 

x”01” :  “Do FIFO command” 

x”0000” : ‘packet_id’ (NB the user always sees zero but the communication VI’s handle this internally) 

 x”1” :  “Hardware” sub-system 

 x”02” :  “Hardware” command code 

 x”004FF” : “Hardware” command data 

 

Adding user logic 

Figure 3 shows the project hierarchy. 

 

 

Figure 3: Project file hierarchy 

 

The user can select the principle clock frequency by editing the clock_wiz IP core settings (it is 

recommended to use 100MHz or higher; the logic will certainly not work with the user clock below 25MHz). 

All custom user logic is added inside the “Command processor” and then connecting I/O up to the top level 

ports. The “Command processor” logic is declared in the file  ‘command_processor.vhd’ for which there is 

an associated test bench  ‘command_processor_tb.vhd’ which allows the user to simulate all custom logic 

without the need to generate or decode Ethernet packet streams. Any additional I/O must also be declared 

in the UCF file. 

 

 



command_processor 

The port map of   ‘command_processor.vhd’ is as follows: 

port ( 

 clk      : in  std_logic; 

 command_available    : in  std_logic; 

 command_contents    : in  std_logic_vector(31 downto 0); 

 command_reply_available   : out std_logic; 

 command_reply_contents   : out std_logic_vector(31 downto 0);  

 GPIO_LEDs     : out std_logic_vector(7 downto 0); 

 GPIO_Switches     : in  std_logic_vector(4 downto 0); 

 GPIO_Buttons     : in  std_logic_vector(4 downto 0) 

); 

 

clk    : user clock 

command_available : set to ‘1’ for one clock cycle by message_parser to indicate 

that command_contents contains a new valid command 

command_contents  : 32-bit command 

command_reply_available : set to ‘1’ for one clock cycle by command_processor to 

indicate that command_reply_contents contains a new valid reply  

command_reply_contents : 32-bit reply 

 

 

Figure 4 shows the simulation of a hardware_processor read of the GPIO switches state 

 

 

Figure 4:  hardware_processor read 

 

Adding user logic functionality 

At the most basic level, user logic can be added to the ‘hardware_controller.vhd’ file. The starting point is 

the hardware command parser process called ‘hdw_control_proc’ and it should be obvious how to add 

extra functionality. Of course, other sub-systems can also be introduced starting from the ‘do_cmd_proc’ in 

the ‘command_processor.vhd’ file. 

 

 

  



Network configuration 

The firmware should, in theory, work on a shared LAN network, however there is absolutely no guarantee 

that it does. The only supported approach is to use a dedicated Ethernet port set as in figure 5: 

 

        

Figure 5: dedicated Ethernet NIC settings (Windows 7) 

 

Note that all services except TCP/IPv4 are disabled and that there is no gateway defined. Multiple boards 

can be connected using a commercial switch. 

 

LabVIEW driver and example projects  

There is no absolutely no requirement to use LabVIEW, any programming language with access to UDP 

sockets can be used. However, only LabVIEW software support is provided here (divided into two projects). 

 

Phy100 project 

The Phy100 project (figure 6) contains all common “driver” functionality which will be used by all individual 

application projects. 

 

 

Figure 6: Phy100 LabVIEW project 



The block diagram for ‘Phy100 _TestComms.vi’ (figure 7) shows the basic software approach 

 

 

Figure 7: Phy100_TestComms.vi block diagram 

 

To establish communications the user must call the VI ‘Phy100_InitComms.vi’ (figure 8) which opens UDP 

communication for the relevant port number. 

 

Figure 8: Phy100_InitComms.vi connector panel 

 

The connection variant is only valid while the caller VI is running so the VI’s cannot be run “statically”, and 

since it also contains packet_id information it must be constantly passed ahead in loops via shift register.  

 

The corresponding VI ‘Phy100_CloseComms.vi’ (figure 9) must be called before the caller VI finishes 

operation otherwise it may be necessary to close and reopen LabVIEW in order to regain control. 

 

Figure 9: Phy100_CloseComms.vi connector panel 

 

NB:  the requirement to always call ‘Phy100_CloseComms.vi’ to close the connection implies that programs 

should avoid allowing the user to stop LabVIEW non-programmatically (by typing Ctrl-‘.’ or clicking on the 

toolbar “Abort” button). Experience suggests that the approach of hiding the toolbar when the program is 

running but leaving the menu bar visible with the Stop option available provides a good compromise 

between avoiding user error and allowing program abort in case of unexpected hanging of the program. 



All command VI’s call internally the VI ‘Phy100_CmdAndResponse.vi’ (figure 10) 

 

Figure 10: Phy100_CmdAndResponse.vi connector panel 

 

‘Phy100_CmdAndResponse.vi’ handles communication with the FPGA including verification in case of reply 

timeout whether the preceding command was executed or not and therefore whether to resend or not. 

The user should treat this VI as a basic building block, simply providing input as LabVIEW string format with 

one or more eight-byte commands and extracting reply information from the output, as in figure 11. 

 

Figure 11:  Usage example for Phy100_CmdAndResponse.vi 

 

Phy100_EnetStats 

Information regarding communication quality can be obtained using the ‘Phy100_EnetStats.vi’ (figure 12). 

Information on packet loss in the connection variant is saved to global variables by 

‘Phy100_CloseConnection.vi’ so that ‘Phy100_EnetStats.vi’ can correctly report them so long as the other 

programs are stopped but not released from memory. 

 

 

Figure 12:  Phy100_EnetStats.vi front panel 



The first four counters are hardware counters in the FPGA logic. “Good packets” indicates the total number 

of packets passing CRC checks and  “Bad packets” indicates the total number of packets which failed CRC 

checks since the board was programmed and regardless of whether those packets were addressed to the 

board or not. These counters show whether the PHY/FPGA timing is good or not. “Bad commands” 

indicates malformed command strings (not multiples of eight bytes). “Rx data errors” indicates that the 

number of clock cycles for which the PHY output line “PhyRxer” was found to be ‘1’. “Tx lost” shows the 

number of packets sent but not received by the FPGA and “Rx lost” shows the number of packets 

transmitted by the FPGA but not received by the LabVIEW program. “Enet stats retries” shows the number 

of times the request for the last command executed had to be repeated due to packet loss. 

 

NexysPhy project 

The NexysPhy project (figure 13) contains the VI’s necessary to work with the user functionality 

implemented in the example project. 

 

 

Figure 13: NexysPhy project 

 

In the nexys3_phy example project the ‘hardware_controller’ logic provides functionality for reading the 

state of the GPIO switches and for setting the 7-segment displays (which by default display the firmware 

version) plus counter logic for packet loss debug. The VI ‘NexysPhy_Hardware_Test.vi’ (figure 14) 

implements these commands and provides the user with a starting point for software development.  

 

  

Figure 14 : NexysPhy_Hardware_Test.vi front panel 



Figures 15 shows the block diagram of the VI ‘NexysPhy_Hardware_ReadGPIOSwitches.vi’ 

 

 

Figure 15: NexysPhy_Hardware_ReadGPIOSwitches.vi block diagram 

 

Centre-left in figure 15 is the sub-VI ‘NexysPhy_Hardware_Command.vi’ used to generate the command 

string. While the use of a sub-VI is not fundamentally necessary (a simple string constant would be 

sufficient), it is used as a method for maintaining clean readable code that can be easily adjusted or 

updated. Figure 16 shows the block diagram of ‘NexysPhy_Hardware_Command.vi’: 

 

Figure 16: NexysPhy_Hardware_Command.vi block diagram 

 

The “Hardware command” input is a strict type-def enum which lists all available commands, which indexes 

the case structure in order to obtain the appropriate command code. ‘Phy100_CPU_Command.vi’ (from the 

Phy100 project) then transforms the 32-bits of command into a complete eight-byte string configured to 

execute the “CPU” “FIFO command” operation which causes the ‘message_parser’ to interact with the user 

logic. Adding a new user hardware_processor command to the software therefore simply involves adding a 

new command to the ‘NexysPhy_Hardware_Command.ctl’ enum and a new command code to the case 

structure in ‘NexysPhy_Hardware_Command.vi’ (there is no default case so that any missing entries cause 

LabVIEW to signal an error). 


