next up previous contents
Next: Elliptic regions Up: Lagrangian code for polymer Previous: Lagrangian code for polymer   Contents

Hyperbolic regions

In hyperbolic regions, where the predominant effect of velocity gradients is the stretching, using the incompressibility $\partial_x u_x = - \partial_y u_y$ and defining

\begin{displaymath}
\lambda = \sqrt{- \det ({\mbox{\boldmath$\nabla$}}{\mbox{\boldmath$u$}}) }
\end{displaymath} (A.12)

the matrix ${\mbox{\boldmath$A$}}$ can be diagonalized as
\begin{displaymath}
{\mbox{\boldmath$A$}} = {\mbox{\boldmath$N$}}{\mbox{\boldmath$D$}}{\mbox{\boldmath$N$}}^{-1}
\end{displaymath} (A.13)

where
\begin{displaymath}
{\mbox{\boldmath$D$}} =
\left(
\begin{array}{ccc}
-{2 \ove...
... 0 \\
0 & 0 & -{2 \over \tau} - 2 \lambda
\end{array}\right)
\end{displaymath} (A.14)

and the eigenvectors matrix ${\mbox{\boldmath$N$}}= (\bar{u}_1,\bar{u}_2,\bar{u}_3 )$ is
\begin{displaymath}
{\mbox{\boldmath$N$}} =
\left(
\begin{array}{ccc}
\partial...
...rtial_x u_y (\partial_y u_y - \lambda) \\
\end{array}\right)
\end{displaymath} (A.15)

The exponential matrix is thus valued as
\begin{displaymath}
e^{{\mbox{\boldmath$A$}}(t)dt} =
e^{- {2 \over \tau} dt}
{\...
...- 2 \lambda dt}
\end{array}\right)
{\mbox{\boldmath$N$}}^{-1}
\end{displaymath} (A.16)



Stefano Musacchio 2004-01-09