next up previous contents
Next: Neutral regions Up: Lagrangian code for polymer Previous: Hyperbolic regions   Contents

Elliptic regions

In elliptic regions, using again the incompressibility $\partial_y u_y = - \partial_x u_x$ and defining

\begin{displaymath}
\theta = \sqrt{\det ({\mbox{\boldmath$\nabla$}}{\mbox{\boldmath$u$}}) }
\end{displaymath} (A.17)

the matrix ${\mbox{\boldmath$A$}}$ can be decomposed in a diagonal part and a pure rotational part:
\begin{displaymath}
{\mbox{\boldmath$A$}} = {\mbox{\boldmath$N$}}({\mbox{\boldmath$D$}} + {\mbox{\boldmath$R$}}){\mbox{\boldmath$N$}}^{-1}
\end{displaymath} (A.18)

where
\begin{displaymath}
{\mbox{\boldmath$D$}} + {\mbox{\boldmath$R$}} =
\left(
\be...
...u} & 0 \\
2 \theta & 0 & -{2 \over \tau}
\end{array}\right)
\end{displaymath} (A.19)

The eigenvectors matrix ${\mbox{\boldmath$N$}}= (\bar{u}_1,\bar{u}_2,\bar{u}_3 )$ is
\begin{displaymath}
{\mbox{\boldmath$N$}} =
\left(
\begin{array}{ccc}
\partial...
...artial_x u_y (\partial_y u_y - \theta) \\
\end{array}\right)
\end{displaymath} (A.20)

and the exponential matrix reads
\begin{displaymath}
e^{{\mbox{\boldmath$A$}}(t)dt} =
e^{-{2 \over \tau} dt}
{\m...
...os(2 \theta dt)
\end{array}\right)
{\mbox{\boldmath$N$}}^{-1}
\end{displaymath} (A.21)



Stefano Musacchio 2004-01-09